Optimization of Content Based Image Retrieval Using Hybrid Approach

Authors

  • Saqib Majeed University Institute of IT, PMAS-Arid Agriculture University, Rawalpindi, Pakistan Author
  • Muhammad Usman University Institute of IT, PMAS-Arid Agriculture University, Rawalpindi, Pakistan Author
  • Kashif Sattar University Institute of IT, PMAS-Arid Agriculture University, Rawalpindi, Pakistan Author
  • Saleem Iqbal Department of Computer Science, Allama Iqbal Open University, Islamabad, Pakistan Author
  • Jawaid Shabir Department of Computer Engineering, SSUET, Karachi, Pakistan Author

DOI:

https://doi.org/10.52584/QRJ.2001.14

Keywords:

Content Based Image Retrieval, Genetic Algorithm, KNN, PSO, Redundancy Factor, Retrieval Accuracy, SVM

Abstract

With the dawn of multimedia technology and the social web, retrieval from large image databases become possible. As a consequence of rising usage and incredible enthusiasm for inquiry about on Content-Based Image Retrieval (CBIR) systems, it needs improvement in the accuracy of CBIR systems in addition to the decline in monotonous results. Currently, the majority of research has focused on the representation and differentiation of images by an arrangement of low-level visual features. However, most of the retrieval systems produce repetitive or unnecessary retrieval results, termed a redundancy factor. In addition, content-based retrieval with reduced redundancy has a direct correlation with high-level semantics which is overlooked. Accurate content retrieval with reduced redundancy enables the user to focus on the actual problem in preference to nurture the retrieval results, augments the efficiency, and improves overall system performance. To enhance the retrieval accuracy and diminish the redundancy factor in image retrieval, we proposed an optimization-based technique that is blended with classification. In the proposed novel hybrid approach for CBIR, we used a two-tier architecture model. The first tier belongs to the feature extraction process via Particle Swarm Optimization with a Support Vector Machine as a classifier. On the way to reduce the redundancy factor, the K-Nearest Neighbor as a classifier is used with the Genetic Algorithm in the second tier. We noted a noteworthy increase in retrieval accuracy for images that is up to 25% (approx.). The proposed hybrid model is effective to enhance accuracy and reduce redundancy factors in CBIR systems. We used the WANG dataset for experimentation. Henceforward, improving the retrieval accuracy and reducing redundancy factor using unsupervised
learning techniques is part of our future work.

Downloads

Published

2022-06-30