Optimization of Content Based Image Retrieval Using Hybrid Approach
DOI:
https://doi.org/10.52584/QRJ.2001.14Keywords:
Content Based Image Retrieval, Genetic Algorithm, KNN, PSO, Redundancy Factor, Retrieval Accuracy, SVMAbstract
With the dawn of multimedia technology and the social web, retrieval from large image databases become possible. As a consequence of rising usage and incredible enthusiasm for inquiry about on Content-Based Image Retrieval (CBIR) systems, it needs improvement in the accuracy of CBIR systems in addition to the decline in monotonous results. Currently, the majority of research has focused on the representation and differentiation of images by an arrangement of low-level visual features. However, most of the retrieval systems produce repetitive or unnecessary retrieval results, termed a redundancy factor. In addition, content-based retrieval with reduced redundancy has a direct correlation with high-level semantics which is overlooked. Accurate content retrieval with reduced redundancy enables the user to focus on the actual problem in preference to nurture the retrieval results, augments the efficiency, and improves overall system performance. To enhance the retrieval accuracy and diminish the redundancy factor in image retrieval, we proposed an optimization-based technique that is blended with classification. In the proposed novel hybrid approach for CBIR, we used a two-tier architecture model. The first tier belongs to the feature extraction process via Particle Swarm Optimization with a Support Vector Machine as a classifier. On the way to reduce the redundancy factor, the K-Nearest Neighbor as a classifier is used with the Genetic Algorithm in the second tier. We noted a noteworthy increase in retrieval accuracy for images that is up to 25% (approx.). The proposed hybrid model is effective to enhance accuracy and reduce redundancy factors in CBIR systems. We used the WANG dataset for experimentation. Henceforward, improving the retrieval accuracy and reducing redundancy factor using unsupervised
learning techniques is part of our future work.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Copyright (c) This is an open access article published by QUEST Research Journal. QUEST Research Journal holds the rights of all the published articles. Authors are required to transfer copyrights to journal to make sure that the article is solely published in QUEST Research Journal; however, the authors and readers may freely read, download, copy, distribute, print, search, or link to the full texts of the articles without asking prior permission from the publisher or the author.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.