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Abstract

These days, object detection is one of the important research problems in computer vision, used in applications such
as real-time surveillance, security, self-driven vehicles, robotics, human-computer interaction, and image retrieval.
Where accurate classification and localization of objects are performed for these applications. This can be achieved
through deep learning-based detection techniques, one of the most widely used contemporary approaches, since they
have high success rates. This paper presents a comprehensive review of recent advancements in deep learning-based
object detection, focusing on notable algorithms such as Faster R-CNN, SSD, YOLOv4, and YOLOv5. In addition,
we have also investigated the latest advances in the YOLO family, including YOLOv7 and YOLOv8, which have
brought architectural improvements for improvement in detection speed and accuracy. These detection parameters
are verified by implementing and testing these algorithms on similar datasets for a comparative analysis of their
performance. Detection experiments are conducted using GPU hardware acceleration, with the primary objectives
being real-time detection and minimizing error rates. The comparative results provide valuable information about
the strengths and weaknesses of each algorithm for real-world applications.
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1 Introduction

Object detection is one of the most compelling
techniques used in recent days to recognize and

locate desired objects from a digital image or video. Its
applications mostly include real-time surveillance, au-
tonomous driving, robot vision, security, human-aided
machine interface, and image recovery. These tasks are
accomplished with the help of various measurement
sensors and algorithms. Object detection can be used
to recognize and locate desired objects from digital
images or videos. The object to be detected may be
a human being, a vehicle, or an animal. Object detec-
tion is a basis for many applications related to face
recognition, character recognition, and video analysis
[1]. The object detection process can be performed for
one of two reasons; firstly, it can be used to detect
the existence of a particular object, such as a specific
building, a wanted person illegal vehicle, etc. Secondly,
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to detect some predefined categories related to objects,
e.g., plants, humans, cats, dogs, mobile phones, books,
etc.
Different challenges regarding visual recognition are
object instance segmentation [2], image classification
[3], semantic segmentation [4], and detection [5]. In
the instance segmentation, different objects are identi-
fied by their individual pixel-level mask called “pixel-
level localization. On the other hand, in semantic
segmentation, a précised category label is assigned
to every pixel-by-pixel classifier in order to extract
more detailed information from an image [6]. If only
semantic segmentation of the object is desired, the
image classification technique is used. While in object
detection, recognition, and location of objects in an
image are defined. This is done by putting a bounding
box around the targeted object.
Initially, object detection used proposal generation,
feature vector extraction, and region classification. In
proposal generation, the aim for desired objects is
achieved in a given image by generating a ”region
of interest” (ROI). The image is scanned by sliding



QUEST RESEARCH JOURNAL, VOL. 22, NO. 02, PP. 30–45, JUL–DEC, 2024 31

windows to extract data. In the second step, in or-
der to extract semantic data from roi, a fixed-length
feature vector obtained from the sliding window is
used. This feature vector is encoded by Scale Invariant
Feature Transform (SIFT) [7], Haar [8], Histogram of
Gradients (HOG) [9], or Speeded Up Robust Features
(SURF) [10]. In the last step, labels are assigned to ob-
jects according to their categories. For region classifi-
cation, support vector machines (SVM) are commonly
used, due to their better performance in small-scale
training data [11].
The traditional methods use feature representation
techniques to generate regions of interest. It is ob-
served that with the help of better feature repre-
sentation and precise regional classification, notable
performance can be obtained [12]. With respect to
generic feature extraction, the Hough transform, while
for corner feature extraction, Harris corner detection
can be used. Comer features are obtained from two
images using the method, and the correlation degree
between their points is calculated to detect objects.
However, the traditional methods showed limitations
during proposal generation, feature description, and
global solution [13]. A large number of unnecessary
proposals were generated during the first step. This
creates confusion during classification. In complex sce-
narios, the manually designed window scaling is unable
to describe objects. Moreover, since each detection
step is designed and optimized individually, the global
solution is not fully optimized. Deep convolutional
networks have overtaken the limitations of traditional
methods and have accomplished notable success in
object detection.
Neural networks are biologically inspired networks [14]
first proposed for image recognition. However, the
early approach does not have a better optimization
algorithm for supervised learning. This research gap
was filled later on by researchers over time. An opti-
mized convolutional network with stochastic gradient
descent shows better performance on digital recogni-
tion. Although deep neural networks also have some
limitations, the enormous out-of-order training data
can cause misleading results. Similarly, limited compu-
tational sources and poor theoretical sustenance also
need to be addressed [15]. Object detection techniques
based on deep learning are highly popular for unusual-
level vision tasks used for real-time object detection
[16]. Furthermore, along with the development of GPU
computing power, deep networks bring evolution in
object detection [17]. In this paper, we will address
major efforts in deep learning-based object detection.
A comparison, that is based on individual performance
of different algorithms, including Faster RCNN, SSD,

YOLOv4, and YOLOv5 are will be submitted. Real-
time object detection and a single sample image will
be used. For comparison, both speed and accuracy will
be taken into consideration.
The paper is further organized as follows: in Sec-
tion 2, the development and work related to Faster
RCNN, SSD, YOLOv4, and YOLOv5 are given. The
architectures of deep learning algorithms, i.e., Faster
RCNN, SSD, YOLOv4, and YOLOv5, are given in
Section 3. The method to compare various algorithms
for object detection in an image or video is also given
in this section. The implementation and comparison
of various algorithms for object detection are given in
Section 4. The paper is concluded in Section 5.

2 Literature Review
In this paper, a comprehensive survey of new advances
regarding deep learning-based object detection is
given. Moreover, four algorithms, RCNN, SSD,
YOLOV4, and YOLOV5, are implemented. Their
performance is tested on similar input data. Deep
learning-based object detection is achieved by two
main methods. One is the single-stage method,
where object localization and object classification
are achieved by a single network; examples are
YOLO and SSD [18]. Another is the Double-stage
method, where two separated networks are used for
localization and classification, such as Faster R-CNN.
The state-of-the-art means applying deep learning
networks as pillars, while detection networks are used
to identify features from input data [19]. For accurate
localization and precise object detection, double-stage
networks are used, while a single-stage network is
used for fast bounding box prediction. In double-stage
detectors, at the first stage, the network that predicts
bounding boxes is called the region proposal network.
The second stage is classification, in which features
of an object are extracted, called bounding box
regression. The single-stage detector directly predicts
bounding boxes without the help of a region proposal
network, making it time-efficient and more suitable
for real-time applications [20].
With recent advancements in data science, deep
neural networks have solved problems of big data
analytics with variations in size and properties [21].
DNNs have been proven powerful tools for computer
vision since they perform a number of standard tasks,
including detecting moving objects in real-time along
with background scenes, shadows, and light intensity
variation [22]. In [23] comparison of object detection
using deep learning with state-of-the-art methods is
done to find out the robustness of improved algorithms
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using Background Challenges Model (BCM) datasets,
while a survey on real-time multi-object detection
with deep learning approaches is presented in [24].
Moreover, the use of deep learning models called
multi-object tracking (MOT) techniques to handle
the challenges of computer vision to track the number
of moving objects is given. In [25], a comparison of
Faster Region-based Convolutional Neural Networks
(Faster R-CNN), SSD, and YOLO has been given
to discover their performance on image detection.
Furthermore, the Microsoft COCO dataset is used
to analyze strengths and weaknesses on the basis of
some parameters, i.e., accuracy and precision. Object
detection procedure depends upon two components
or steps [26]-[27]. In object detection, the first step
to be considered is detection pattern settings, i.e.,
box-level and pixel/mask-level techniques. Another
consideration is to differentiate between algorithms it
is a stage detector or a stage detector.
There are two types of settings for localization:
bounding box-level localization and Mask or
pixel-level localization [28]. In the first type of
detection algorithm, box interpretation is required,
and performance is measured by calculating the
Intersection over Union (IoU) of the predicted box and
ground truth box. Another setting, called instance
segmentation, is based on pixel or mask level and
used to segment each object as compared to the
roughly generated bounding box. Deep learning-based
state-of-the-art algorithms are classified into two
types [29]; i.e., one-stage detectors and two-stage-
detectors. One-stage-detectors have a single shot for
proposal generation plus image classification [30].
However, these single-step algorithms are faster but
are not accurate state-of-the-art methods. Two-stage
detectors complete the detection process in two
steps [31]-[36]. In the first step, a set of proposals
is generated then in the second step deep learning
network will be used to encode the features of
the generated set of proposals to predict the class
of objects [37]-[39]. In the first step, deep neural
learning networks will be able to find the proposed
region of images or objects. While feature extraction,
classification, and making predictions of objects [40]
are done in the second step, where DNN-based models
are used to categorize or classify with exact labeling.
Moreover, a region is basically a given set of objects or
backgrounds that is refined by the proposed model. It
has typically state-of-the-art accuracy and therefore
has a slower processing time.
The deep-learning-based object detection is therefore
achieved by two main methods. YOLO and SSD are
single-stage methods; object localization and object

classification are achieved in a single step [41]-[46].
In Faster R-CNN two-stage method is used, which
utilizes two separate networks for localization and
classification [47]-[49]. The state-of-the-art means
applying deep learning networks as pillars, while
detection networks are used to identify features from
input data [50]. For accurate localization and precise
object detection, double-stage networks are used,
while a single-stage network is used for fast bounding
box prediction. In double-stage detectors, at the first
stage, the network that predicts bounding boxes
is called the region proposal network. The second
stage is classification, in which features of an object
are extracted, called bounding box regression. The
single-stage detector directly predicts bounding boxes
without the help of a region proposal network, making
it time-efficient and more suitable for real-time
applications [51].
You Only Look Once (YOLO), the initial form
available in 2016, called YOLOv1, is a single-stage
real-time detection algorithm [52]-[57], where an
image is divided spatially into a 7x7 grid. In an
ideal implementation, each cell presents one or more
objects; however, in a real case, two adjacent centers
of objects are considered. In [58], they used YOLO
to solve real-life difficulties for diverse smart city
applications, such as parking occupancy detection.
The YOLO architecture has a simple backbone, single
pass, and lightweight architecture with an end-to-end
optimization manner [59]; hence, in [60], they used
it for traffic sign recognition. In addition, it has
the capability to predict objects with 45 frames per
second (FPS) and can achieve 155 FPS [61]. The
main limitation of YOLO is that it cannot detect
small and numerous objects in specified regions
[62]. Furthermore, it is difficult for YOLO to work
on multiple scales [63]. The major change from
other networks is that, despite using classifiers to
perform detection, they practice object detection as a
regression assignment to spatially separate bounding
boxes and related class probabilities. In [64], the
detection demonstration is improved in YOLO by
using the pass-through layer that combines feature
maps from the front layers to get fine-grained features
to reduce the negative effect of model size.
The probabilities are predicted right away from images
during solitary evaluation through only using neural
networks [65]. YOLOv1 was followed by YOLOv2,
published after performing several developments,
such as Dark-net 19 convolutional layers architecture,
advanced resolution classifier, bounded boxes, and
various usages of the dataset for preparation, such
as PASCAL VOC and COCO classifier,r making it
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quicker and more accurate. In [66], Pothole detection
using YOLOv2 object detection is done. YOLOv2
is an improved version of YOLO and outperforms
significantly in real-time with maintained inference
speed. YOLOv2 followed a powerful and strong
deep CNN backbone architecture, which could be
trained on high-resolution images such as 448x448.
YOLOv2 showed a better anchor strategy for training
data using k-means clustering. YOLOv2 used batch-
normalization and multilevel training methods,
attained state-of-the-art results in object detection,
and reduced difficulties in optimized localization [67].
In [68], an improved YOLOv2 has been proposed for
object detection to solve the limitations of the basic
version on small object detection and large parameters
in the model. In this way, standard convolution
is replaced by depth-wise separable convolution in
YOLOV2. Additionally, FPN is used as a detection
model to enhance small object detection on multi-level
images compared to the previous feature fusion
method, and it also reduced the number of parameters
by 78.83% [69].
Another updated YOLO version named YOLOv3
with little improvement has been proposed in [70].
It has increased the number of steps without speed
loss. YOLOv3 computes as fast as 22ms on 320×320
and results in 28.2 mAP. YOLOv3 performed better
than SSD but faster and attained 57.9mAP@50 in 51
ms [71]. Real-time vision and object detection and its
process on an embedded system with limited memory
and low computation capabilities is a challenging
task [72]. To compensate for this issue, the authors
proposed a lightweight Darknet-53-based network to
reduce the parametric size object detection model
by 16%. In [73], YOLO is developed to optimize the
accuracy and speed of detection of malaria pathogens
with minimal resources. Moreover, the small-scale
detection model without loss of accuracy uses a multi-
scale feature-pyramid to give a better performance
called mini-YOLOv3 [74]. As compared to basic
YOLOv3, mini-YOLOv3 is only 23% of the previous
model with fewer parameters. YOLOv3 was trained
on the COCO dataset comprising 80 labels [75].
There are clear differences among various versions of
YOLO [76]-[83]. YOLOv3 uses logistic classifiers for
respective classes by assigning scores to the objects
[84].
YOLOv4 was introduced in 2020 [85], where a bag
of freebies (BoF) and a bag of specials (BoS) were
used. The BoF makes progress in accuracy without
affecting time [86]. By increasing cost, the BoS
increases the accuracy of object detection [87]. In
[88] YOLOv5 algorithm was introduced, and where

PyTorch library of the Python language was used
during the development of this algorithm. The model
is improved by implementing a data augmentation
technique, and it has the feature of auto-cultured
bounding case anchor [89].
The initial Single Shot Detector (SSD) was given in
[90], and afterward used VGG16 as a rudimentary
network because it has better image classification.
In [91], an efficient face mask detector was built
using a Single Shot Detector (SSD). Stationary
candidate objects were classified using SSD [92] to
detect suspected persons near some objects of point of
interest, such as backpacks and handbags, at a certain
time, for surveillance purposes. Stationary objects
were removed from the detection process to avoid an
alarm since they were not required to be detected. The
fundamental property of SSD is the smearing of minor
convolutional filters to extract maps. These maps are
used to calculate class scores and offsets for a static
set of default bounding boxes [93]. In [94], a novel
single-shot refinement neural network was publicized
for firm and precise 3D object detection from the raw
LiDAR point cloud. It is observed that the SSD model
has been enhanced by numerous scholars [95]. VGG16
can be used as an item classifier for SSD, MobileNet,
or ResNet [96]. The major difference between YOLO
and SSD is that YOLO takes a fully connected layer
while the SSD swaps it with a convolutional filter [97].
R-CNN is a two-stage detector algorithm [98], where
the workflow in R-CNN is divided into three main
steps, i.e., proposal generation, feature detection,
and image class classification. R-CNN creates a
random proposal set using a Selective Search for each
image, and its structure is used to reject regions that
can be identified on the basis of previous regions.
Additionally, each input proposal is resized into
a fixed value of region size and then encoded for
feature extraction using a Support Vector Machine
(SVM) [99]. Proposal generation and its methods
are important to be considered for the algorithm’s
performance [100]-[103]. In [104], R-CNN is used for
synthetic aperture radar (SAR) target detection. In
[105], Faster R-CNN is used for sea surface object
detection. In [106], Faster R-CNN is used for polyp
detection for colon cancer. In [107], a detection method
of pulmonary embolism based on Faster R-CNN is
proposed. In [108], Pulmonary Nodule Detection
Based on Faster R-CNN with Adaptive Anchor Box is
obtained. In [109], Cascade Faster R-CNN Detection
for Vulnerable Plaques in OCT Images is done. In
[110], Rapid Detection of Rice Disease Based on Faster
R-CNN is done. In [111], Faster R-CNN is developed
for the same object retrieval. In [112], Faster R-CNN
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Fig. 1: Architectural overview of YOLOv4 algorithm
[125]

for failed satellite components detection is done.
In [113], adaptive defect detection for 3-D printed
lattice structures based on Faster R-CNN is done. In
[114], fast and accurate craniomaxillofacial landmark
detection via 3D Faster R-CNN is achieved.

3 Material and Methods
3.1 Algorithms and Architecture
YOLOv4: It is an object detection algorithm with
the YOLO framework [115], that aims to improve
object detection accuracy and speed by merging
various computer vision research [116]. YOLOv4-
tiny, YOLOv4-small, YOLOv4-medium, YOLOv4-
large, and YOLOv4-xlarge are its various models, each
offering a trade-off between accuracy and speed. Some
key features and improvements introduced in YOLOv4
are as follows [117-125]:

• YOLOv4 has a modified CSPDarknet53 backbone
architecture, a Darknet design used in previous
YOLO versions. This backbone uses convolu-
tional and shortcut layers for feature extraction.

• Feature pyramid network (FPN) in YOLOv4
enhances detection at various scales for robust
multi-scale object detection.

• Path Aggregation Network (PANet) is used to
improve spatial awareness of the model by helping
it to get related information.

• The problem of gradient saturation is improved
using a Mish activation function, which enhances
convergence speed and accuracy.

• It uses the GIoU loss function, and a cosine
annealing scheduler for learning rate adjustment
and data augmentation methods such as mosaic
and random shapes.

• It adopts advanced training techniques such as
Bag of Freebies (BoF) and Bag of Specials (BoS),

Fig. 2: Architectural overview of YOLOv5 algorithm
[133]

to optimize label smoothing, and grid sensitivity
for better performance

YOLOv4 is a complex algorithm having different
variations with specific features. It also requires high-
level computational resources for training and implica-
tion. The overview of the YOLOv4 algorithm is shown
in Fig. 1.

YOLOv5: It is one of the most recent object
detection algorithms used for real-time object detec-
tion. It is an enhanced version of YOLOv4 [126].
In order to get better detection accuracy by using
a more efficient and flexible PyTorch deep learning
framework [127], designed such that it is user-friendly
[128]. It has further sub-models such as YOLOv5s,
YOLOv5m, YOLOv5l, and YOLOv5x, with suffixes
indicating small, medium, large, and extra-large [129].
Each model has its own accuracy and speed level, and
thus can be chosen as per requirement. YOLOv5 has
many advanced features that include the use of anchor-
free bounding box prediction, better data augmenta-
tion techniques, and training strategies. It also has
various backbones, such as CSPDarknet, EfficientNet,
and ResNet, providing flexibility in choosing the un-
derlying architecture [130]. The YOLOv5 framework
provides pre-trained models, and it is easier to start an
object detection task [131]. However, YOLOv5 also has
limitations such as dataset quality, model fine-tuning,
and deployment scenarios to achieve optimal results
for specific use cases [132]. The architectural overview
of the YOLOv5 algorithm is shown in Fig. 2.

Single shot detection (SSD): It is an object
detection algorithm that was introduced by Wei Liu et
al., in 2016 [134]. SSD is designed to perform real-time
object detection in images by predicting class labels
and bounding box coordinates for multiple objects in
a single pass through a convolutional neural network
(CNN) [135]. Some key features and characteristics of
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Fig. 3: Architectural overview of SSD algorithm [144]

SSD are as follows [136-144]:
• SSD uses a series of convolutional layers of dif-

ferent sizes to capture features at multiple scales,
having different spatial resolutions, to allow the
model to detect objects of various sizes.

• Pre-defined bounding boxes of different aspect
ratios and sizes are used to predict object loca-
tions and sizes. Predictions at different scales are
performed. For each scale, the model forecasts
class probabilities for each anchor box and adjusts
the coordinates of the anchor boxes to match the
ground truth objects in the image. Furthermore, it
can detect multiple object classes simultaneously.

• Instead of using a fixed set of anchor boxes, SSD
generates default boxes at different scales and
aspect ratios dynamically based on the aspect
ratio and size of the ground truth objects present
in the training dataset. This allows the model to
adapt to different object shapes and sizes.

• The training of SSD involves optimizing a com-
bined loss function that incorporates both clas-
sification and localization losses, to measure the
accuracy of class predictions and the accuracy of
predicted bounding box coordinates, respectively.

SSD has been widely adopted in various computer
vision applications due to its capacity to balance speed
and accuracy in real-time object detection tasks. It has
become a popular choice for scenarios that need fast
and efficient object detection, such as video analysis,
autonomous driving, and surveillance systems [143].
The overview of the SSD algorithm is shown in Fig. 3.

Faster-RCNN: A faster Region-based Convolu-
tional Neural Network is an algorithm based on an
extension of the original R-CNN framework in terms
of addressing some of its limitations, particularly in
terms of accuracy and speed [145]. Key features and
components of Faster R-CNN are as follows [146-154]:

• It introduces a Region Proposal Network (RPN)

for the convolutional feature maps of the input
image, which generates a set of region proposals,
which are potential bounding box locations, con-
taining objects of interest.

• Faster R-CNN shares the convolutional layers
between the RPN and the subsequent object de-
tection network to reduce computation and make
the network trained end-to-end.

• RoI (Region of Interest) pooling is generated
through Faster R-CNN applies RoI pooling, which
extracts fixed-size feature vectors from the convo-
lutional feature maps for each proposal, then feeds
them into fully connected layers for subsequent
classification and bounding box regression.

• Classification and bounding box regression are
simultaneous, using the RoI features to predict
class probabilities and refine the coordinates of
the bounding boxes for each proposed region.

• Training with backpropagation is performed to
generate accurate region proposals, then the
shared convolutional layers and the subsequent
layers are fine-tuned for object classification and
bounding box regression using the region propos-
als.

• The training of Faster R-CNN involves optimizing
a combined loss function that includes a clas-
sification loss (usually cross-entropy loss) and a
bounding box regression loss (typically based on
the smooth L1 loss). The losses are computed for
both the RPN and the object detection network.

Faster R-CNN achieves higher accuracy compared
to its predecessor, R-CNN, and its variants, such as
Fast R-CNN, by eliminating the need for external
region proposal methods and integrating the proposal
generation process within the network. It combines
the benefits of region proposal techniques with the
efficiency of shared convolutional layers, making it
widely adopted for various object detection tasks, in-
cluding instance segmentation and object localization
in both images and videos. The overview of the R-CNN
algorithm is shown in Fig. 4.

3.2 Object Detection
In this work algorithms given in Section 3.1 are used
for object detection. These algorithms are used on the
same images and videos in the same manner in order to
compare them. An image or video sample is fed to the
detection model as input, which outputs the images
with labels and bounded boxes. The provided sample
is first pre-processed for object detection to make it
suitable for the object detection model. After prepro-
cessing, a pre-trained model is loaded. Loading a pre-
trained model for object detection typically involves
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Fig. 4: Architectural overview of R-CNN [154]

using a deep learning framework like TensorFlow or
PyTorch.
After loading the pre-trained model, a forward pass is
applied. The pre-trained model performs detection on
images or videos by passing the input data through the
model and interpreting the output. The exact process
for performing inference will depend on the specific
framework and model used. In object detection, the
forward pass refers to the process of passing an input
image through a pre-trained neural network to obtain
predictions for the presence and location of objects
in the image. The forward pass involves feeding the
input image through the model’s layers, computing the
necessary transformations and operations, and finally
obtaining the output predictions.
Afterward, object detection is performed to identify
and locate objects of interest within an image or
a video using deep learning models of Section 3.1.
The detection algorithm draws bounding boxes around
predicted objects to indicate their precise locations.
Post-processing is also required to refine the results by
using various techniques to filter, refine, and organize
the detected objects. It is also needed to remove any
chance of duplication or unwanted results.
After post-processing, the visualization of object de-
tection results and the performance of an algorithm are
tested. Most visualization techniques are implemented
using computer vision libraries such as OpenCV. The
output of object detection is a set of predictions that
indicate the presence, location, and class of objects
within an input image or video frame. The output
format may vary slightly depending on the specific ob-
ject detection model and the deep learning framework
used. The output is usually in the form of a list of pre-
dictions, with each prediction containing the bounding
box coordinates, class label, and confidence score.
Depending on the implementation and requirements,
additional information may also be included in the

Fig. 5: Flowchart for object detection using various
algorithms

output, such as key points for pose estimation, mask
segmentation for instance segmentation, or tracking
IDs for multi-object tracking. The flowchart for object
detection is shown in Fig. 5.

3.3 Evaluation Approach

Primarily, in this paper, each algorithm will be as-
sessed for real-time videos. For evaluation of object
detection, the accuracy of the algorithm comparison
through mean average precision and frames per second
will be done. In terms of exactness, there are numerous
diverse approaches utilized to assess the exactness
of detection; however, mAP and FPS are the most
important properties. Intersection over union (IoU) is
used to evaluate the performance of object detection,
given as;

IoU = Areaofoverlap(Agt ∩ Ap)
AreaofUnion(Agt ∪ Ap) (1)

where Agt is the ground-truth bounding box, Ap is
the predicted bounding box, and the threshold of IoU
is 0.5 to classify whether either prediction is a true
positive or a false positive.
With TP, as be true positive value, TN, as the true
negative value, FP, as the false positive value, and FN
be the false negative value, the precision value P is
given as:

P = TP

TP + FP
(2)

The recall value R, which is the ratio of the number
of true positives divided by the sum of true positives
and false negatives, is given as:

P = TP

TP + FN
(3)
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Average precision AP, whose value falls in the range
of 0-1, the average accuracy rate, which is the integral
of the precision index to the recall index, is given as:

AP =
∫ 0

1
(P.R)dR (4)

The value of mAP is the average accuracy of the
mean and is given as:

mAP = 1
QR

∑
q=QR

AP (q) (5)

where QR is the number of categories. On the other
hand, frame per second (FPS) is a typical assessment
measure utilized to determine how quickly it is for
a proposed organized demonstration to distinguish
object outlines per second on average. In addition to
mAP and FPS, efficiency and latency are two other
evaluation metrics for object detection. Efficiency in-
dicates the achievement of high accuracy with low
computational resources.

4 Result and Discussion
The comparison of object detection is done using
YOLOv4, YOLOv5, SSD, and Faster-RCNN in a
Python environment. Object detection using various
images and real-time videos is performed. The compar-
ison of the object detection for various algorithms will
be achieved using each image or video. In the end, the
performance of each algorithm in terms of speed and
accuracy is verified along with YOLOv7 and YOLOv8.

4.1 Single Image Object Detection
In Fig. 6, object detection results for various
algorithms under consideration are shown. Each
algorithm, i.e., YOLOv5, YOLOv4, SSD, and Faster
RCNN, was tested using a single picture. Five
different pictures are used with various locations,
with people, cars, and mobile phones taken as objects
to be detected. It can be observed in Fig. 6 that
all the objects are detected the objects accurately
except Faster-RCNN, which means that they are
good in terms of accuracy. In Table 1 properties
such as accuracy, execution time, and speed are
taken into consideration for single image input via
various algorithms/ Whereas Fig.8 represents the
bar chart, which compares four object detection
models (YOLOv5, YOLOv4, SSD, and Faster-
RCNN) in terms of two properties, accuracy and
response time. In terms of accuracy, YOLOv4 has
the highest accuracy, followed by YOLOv5, SSD
has moderate accuracy, and Faster-RCNN has the
lowest accuracy among the four models. In terms

of response time, Faster-RCNN takes the most time
to perform detection, followed by YOLOv4, SSD
performs relatively fast, and YOLOv5 is the fastest in
terms of detection time.
This comparison suggests that while YOLOv4 offers
the best accuracy, it trades off by taking more time,
whereas YOLOv5 is a good balance between speed and
accuracy. Faster RCNN is slow but might be preferred
in scenarios where accuracy isn’t the primary concern.
The accuracy metric is crucial for performance
comparison because it is determined by the number
of quality training samples, threshold values, and
the model’s parameters, which ultimately reflect
an algorithm’s precision and overall capabilities.
In our analysis, YOLOv4 demonstrated higher
accuracy compared to YOLOv5, Faster R-CNN,
and SSD. Faster R-CNN showed a tendency to miss
some instances, which can be attributed to a high
number of false negatives (FN), recorded at 150, thus
reducing its detection accuracy. This highlights the
importance of accuracy in evaluating an algorithm’s
robustness. Regarding processing time, we measured
the execution time for detecting objects in a single
frame. YOLOv5 emerged as the fastest algorithm,
with detection times ranging from 0.12 to 0.2 seconds
per frame. In contrast, Faster R-CNN required around
1 second per frame, which highlights the substantial
performance gap in processing speed between these
models. Notably, the execution time was consistent
across various image sizes, showing no significant
dependency on the image dimensions.

4.2 Video outputs
In Fig. 7, snapshots for object detection in a video
for various algorithms under consideration are given.
Faster-RCNN is not taken into consideration for real-
time object detection because of its poor performance
in terms of accuracy. YOLOv5, YOLOv4, and SSD
are tested using the same video with people, cars, and
objects. It can be observed in Fig. 7 from the video
output results that YOLOv4 has the best accuracy
compared to YOLOv5 and SSD.

In Table 2, the accuracy, execution time, and
speed are taken into consideration for the video.
Fig.9 represents a bar chart comparing mAP (mean
Average Precision) and Time across different object
detection models (YOLOv5, YOLOv4, and SSD). It
can be observed that YOLOv4 (green) has the highest
mAP, indicating it is the most accurate among the
three models for object detection. YOLOv5 (blue) has
slightly lower mAP compared to YOLOv4, but still
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TABLE 1: One image output, visual results based on accuracy

Property yolov5 yolov4 SSD Faster-RCNN
Accuracy Less than yolov4 but

more than SSD and
Faster-RCNN

Highest Less than yolov4 and
yolov5 but more than
Faster-RCNN

Lowest

Time 0.12 ˜ 0.20 (s/frame) 0.86 ˜ 0.94 (s/frame) 0.17 ˜ 0.23 (s/frame) 1s/frame
Speed Fastest Slower than yolov5

and SSD, but faster
than Faster-RCNN

Faster than yolov4
and Faster-RCNN
but slower than yolov5

Slowest

TABLE 2: Comparison based on video detection

Property yolov5 yolov4 SSD
Accuracy Less than yolov4

but more than SSD
More than yolov5
and SSD

Less than yolov4 and
yolov5

Time 0.14 ˜ 0.22 (s/frame) 0.87 ˜ 0.96 (s/frame) 0.18 ˜ 0.25 (s/frame)
Speed Faster than yolov4

and SSD
Slower than yolov5
and SSD

Faster than yolov4 but
slower than yolov5

Fig. 6: Object detection results on images using various
algorithms; (a) YOLOv5, (b) YOLOv4, (c) SSD, and
(d) Faster-RCNN

performs well in terms of precision. While SSD (red)
has the lowest mAP, suggesting it is less accurate in
detecting objects compared to YOLOv5 and YOLOv4.
For execution time for detection, the YOLOv4 (green)
takes the most time for object detection, which implies
it is slower but highly accurate. YOLOv5 (blue) is
much faster than YOLOv4, and its time is the lowest
among the three models, making it the fastest model
in terms of processing time. While SSD (red) also has
a shorter detection time, faster than YOLOv4, but
slower than YOLOv5. This means that the YOLOv4

Fig. 7: Object detection results on video frames using
various algorithms; (a) YOLOv5, (b) YOLOv4, and
(c) SSD
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Fig. 8: Performance comparison of object detection
models

Fig. 9: mAP and time comparison of YOLOv5,
YOLOv4, and SSD models

provides the best accuracy (highest mAP) but at the
cost of longer detection times. YOLOv5 balances both
accuracy and speed, making it an efficient choice for
real-time applications. However, SSD is a fast model
but sacrifices some accuracy for speed.
This comparison suggests that YOLOv4 is ideal
when accuracy is the priority, while YOLOv5 is
preferable when fast processing times are more
critical, especially in real-time scenarios. SSD might
be chosen when speed is important, but with an
acceptable compromise in precision. The accuracy can
be compromised because it has shown satisfactory
performance in accuracy. The mAP of all the
algorithms is also given, where it is observed that
YOLOv4 is more accurate compared to its boost
version YOLOv5, and also greater specific than SSD.
Furthermore, frames per second (FPS) is a popular
assessment criterion used to measure how speedy
it is for a proposed community model to hit upon
items frames per second on common. Additionally, it
has been called body rate or frame frequency. If the
rate is better, it means that it has a better overall

Fig. 10: Precision-Recall curves for three object detec-
tion models

performance to deal with more pixels every second.
The FPS of those three algorithms is given in Table 3.
Yolov5 can system 58 frames consistent with second,
Yolov4 can do 54 frames in step with second, while
SSD is capable of processing 56 frames according to
second. The FPS is probably numerous depending on
the overall performance of hardware gadgets like the
GPU, CPU, and so on. However, it can be declared
that the Yolov5 model detection has a better speed
than Yolov4 and SSD. Those algorithms can also
compare the bottom of the time taken to process one
frame. Outcomes show that YOLOv5 is the quickest
among the two different algorithms in this domain.

Fig.10 shows the Precision-Recall curves for three
object detection models: YOLOv5, YOLOv4, and
SSD. The Recall is given on the x-axis for the pro-
portion of actual positive instances correctly identified
by the model. Precision is given on the y-axis for
the proportion of predicted positive instances that
were actually positive. The YOLOv5 (Blue) curve
maintains a relatively high precision across a broad
range of recall values, indicating that it has a good
balance between precision and recall. The YOLOv4
(Green) curve shows high precision initially but tends
to decrease as recall increases, indicating that it may
struggle to maintain precision at higher levels of recall.
While SSD (Red) has the lowest precision across most
recall levels, suggesting it may be less effective than
the other two models in accurately detecting objects.

4.3 Comparison with Recent Algorithms
The comparison of YOLOv4, YOLOv5, and SSD
(Single Shot MultiBox Detector) is further performed
with YOLOv7 and YOLOv8 [155-157], based on per-
formance and usability, evaluated on the same en-
vironment and machine. This comparison includes
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TABLE 3: Comparison based on mAP, FPS, Time

Measure Yolov5 Yolov4 SSD
mAP 0.62 0.65 0.32
FPS 58 54 56
Time 0.14 ˜ 0.22

(second / per frame)
0.87 ˜ 0.96
(second / per frame)

0.18 ˜ 0.25
(second / per frame)

real-time video stream processing and feature calcu-
lation. Evaluation in terms of architecture and de-
sign of these object detection models suggests that
YOLOv4 and YOLOv5 have a CNN-based design with
CSP-enhanced backbones, PANet-style, and standard
YOLO detection features. YOLOv7, on the other
hand, is an enhanced backbone and a task-aligned pre-
diction for improved accuracy. YOLOv8 uses anchor-
free detection; therefore, it is more flexible than other
YOLO models. SSD has a simpler architecture with
an FPN neck and MultiBox detection head; therefore,
it is fast but less accurate compared to YOLO-based
algorithms. In Table 4, a comparison of YOLOv4,
YOLOv5, YOLOv7, YOLOv8, and SSD, based on
their performance, accuracy, training, and key fea-
tures, is given. In terms of performance, mean-average
precision (mAP), speed (FPS), efficiency, and latency
are considered, and it is concluded that YOLOv8 is
the best choice for real-time applications, offering the
highest accuracy, fastest speed, lowest latency, and
best optimization. While YOLOv7 is a close second,
it is highly efficient and fast. YOLOv5 is still a great
balance of speed and accuracy for many applications.

In terms of training and deployment, it is con-
cluded in Table 4 that YOLOv8 is the easiest to
train, offers the most pre-trained model variants,
and supports multiple frameworks (PyTorch, ONNX,
TensorRT, OpenVINO, CoreML), making it the best
choice for deployment. YOLOv5 is also easy to train
and provides strong support for custom datasets. How-
ever, it has fewer deployment options than YOLOv8.
YOLOv7 and YOLOv4 require moderate effort for
training, with YOLOv7 being more optimized for
performance. In terms of key features, the YOLOv8
is observed to be the most versatile model, support-
ing instance segmentation, pose estimation, classifica-
tion, and both anchor-based and anchor-free detection,
making it ideal for multi-task applications. YOLOv7
is the only other model that supports pose estima-
tion, but it lacks instance segmentation and anchor-
free detection. YOLOv5 and YOLOv4 are limited to
object detection only, with no support for segmen-
tation or pose estimation. SSD is the least feature-
rich, only supporting object detection and lacking

advanced capabilities. Overall, YOLOv8 is the best
choice for applications requiring multiple tasks like
detection, segmentation, and pose estimation. There-
fore, it may be concluded that YOLOv8 is the most
versatile model, excelling in real-time detection, edge
device compatibility, high-accuracy applications, and
multi-task flexibility (detection, segmentation, classi-
fication). YOLOv7 is also a strong choice for real-
time detection and high-accuracy tasks, but is less
optimized for edge devices and lacks segmentation/-
classification support. YOLOv5 is well-optimized for
real-time detection and edge devices, making it a
balanced choice for lightweight applications.

5 Conclusion
In this paper, a survey and comparison of various deep
learning algorithms for object detection have been
provided, focusing on YOLOv5, YOLOv4, SSD, and
Faster RCNN for both single images and video frames.
It is observed that both versions of YOLO outperform
SSD and Faster RCNN in accuracy, as some objects
remain undetected by the pre-trained models of the
latter algorithms. YOLOv4 and YOLOv5 show better
accuracy, while SSD demonstrates decent speed com-
pared to YOLOv4. YOLOv5 emerges as the fastest
algorithm overall. If accuracy is the priority, YOLOv4
is recommended, but for real-time applications where
speed is critical, YOLOv5 is a better option. The
trade-off between speed and accuracy depends on
the user’s requirements. On the basis of accuracy,
YOLOv4 stands out compared to YOLOv5, Faster-
RCNN, and SSD. Faster-RCNN is not suitable for real-
time detection due to its poor performance in both
speed and accuracy. However, future improvements
in these models could enhance their capabilities by
leveraging deep learning techniques and refining the
algorithms’ layers. Then the paper further compared
various deep learning algorithms for object detection,
focusing on YOLOv4, YOLOv5, YOLOv7, YOLOv8,
and SSD for both single images and video frames.
The results indicate that YOLO models significantly
outperform SSD in both accuracy and speed, as some
objects remain undetected by SSD’s pre-trained mod-
els. Among the YOLO versions, YOLOv8 achieves
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TABLE 4: Comparison of various object detection models

Feature YOLOv4 YOLOv5 YOLOv7 YOLOv8 SSD
Comparison based on Speed and Accuracy

mAP@50 (COCO) ˜50-55% ˜55-56% ˜56-57% ˜57-58% ˜42-45%
Speed (FPS) Slower Faster Faster than

YOLOv5
Fastest Slower

Efficiency High but heavier Efficient High efficiency Most optimized Moderate
Latency High Low Moderate Lowest Higher than YOLO

Comparison based on Training and Deployment
Ease of Training Moderate Easy Moderate Easiest Difficult
Pretrained Models COCO COCO, custom COCO, custom More pre-trained

variants
COCO, VOC

Framework
Support

Darknet,
TensorFlow,
OpenCV

PyTorch PyTorch PyTorch, ONNX,
TensorRT,
OpenVINO

TensorFlow,
PyTorch

Exportability ONNX,
TensorRT

ONNX,
TensorRT

ONNX, TensorRT ONNX, TensorRT,
OpenVINO,
CoreML

ONNX, TensorFlow,
TensorRT

Comparison based on Key Features
Instance
Segmentation

No No No Yes No

Pose Estimation No No Yes Yes No
Multi-tasking Object detection only Object

detection
Object detection,
pose estimation

Object detection,
segmentation,
classification

Object detection

Anchor-Free
Support

No No No Yes No

the highest accuracy, followed by YOLOv7, YOLOv5,
and YOLOv4. However, YOLO models have several
limitations, which include their struggle with detecting
small or obscured objects with complex backgrounds.
Additionally, the computational cost associated with
high-performing models like YOLOv8 is another prob-
lem that can be faced during the detection process.
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