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Abstract

Bivariate distribution models are commonly used to analyze sports data and data from various fields. These
models are used to analyze discrete count data with two dependent variables in the data. In this research
article, we have used Bivariate Poisson and Diagonally Inflated Bivariate Poisson regression models. We have
proposed an estimation procedure in the Bayesian framework in conjunction with the augmentation of data.
For parameter estimation, we use Gaussian priors and beta priors for both models. To illustrate the fitting
performances of our suggested models we have performed real data analysis on English Premier League
soccer data.

Index Terms—Bayesian Analysis; Bivariate Poisson; Regression Models; Inflated Bivariate Poisson; Soccer data analy-
sis

✦

1. Introduction

THE univariate Poisson distribution has been
applied as the simplest modeling technique

to analyze the competition between two teams in
sports. Researchers have found a low correlation
when modeling with independent Poisson models,
hence, they did not include or discuss such type
of correlation while drawing inferences. Several re-
searchers [1], and [2] found a relatively low correla-
tion that can be ignored in modeling since it needs
more sophisticated and advance techniques. In team
matches the opposite teams interact, for example, in
soccer or a football game the performances of the
two teams are correlated, which affects and changes
the speed of the game and opportunities for gaining
more scores. Bivariate models that are extended
or derived from the univariate Poisson model are
more appropriate choices for dealing with team
performances or the paired count data that exhibit
correlation. These models are considered suitable
options to analyze the data in various fields in-
cluding medical research, labor mobility, sports, and
accident data analysis. There is sparse literature
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about the applications and implementation of these
models because these involve the complicated na-
ture of computation, hence these are less in use
by researchers. [3] discussed bivariate Poisson (BP)
distribution but did not explain its uses, however,
some other researchers discussed BP and its in-
flated forms in detail. [4] and [5] discussed zero-
inflated BP models, whose computation regarding
estimation is easy, but deals with excess (inflation)
of zeros (0, 0) only, in the data than that of other ob-
servations. [6] suggested a new diagonally inflated
bivariate Poisson (DIBP) regression model, which is
an extension of zero-inflated models. They have dis-
cussed the maximum likelihood estimation (MLE)
of parameters through the expectation minimiza-
tion algorithm (EM). [7] suggested bivariate Poisson
regression to estimate forecasting models for scored
goals and conceded. They also used ordered probit
regression to compute forecasting models for in-
game results. [8] model animal-vehicle collisions
(AVC) data and carcass removal data together by
using BP and DIBP models, which helps researchers
to use this method for investigating AVCs from a
different perspective for road safety. [9] analyzed
the Zimbabwe Premier Soccer League and showed
that there was not the only advantage of the home
ground (HG) but the goals by any two teams’
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opponents’ teams other were also correlated with
a relatively low dependence coefficient. In recent
years [10] used a Weibull inter-arrival-times-based
count process and a copula for forecasting the total
goals scored by home and away teams. [11] used
BP regression models to predict winning probability
and scoring potency. They also have shown that in
team matches home and away performances and
scores of teams are affected by corner profiles and
shots on targets. Although the interpretation of the
parameters of the differences between two Poisson
and two BP variates is different but the function
of the differences between the two BP variates un-
der consideration is the same as the function of
the difference between two independent Poisson
variates. We have used BP and DIBP models with
modifications to generate some simulation results
by analyzing English Premier League (EPL) soccer
data. We have constructed an efficient MCMC al-
gorithm by using Gibbs sampler for BP and DIBP
model for their effective implementations.

2. Models

2.1. Bivariate Poisson regression model

Consider three independent Poisson random vari-
ables T1, T2, and T3 with means λ1, λ2, and λ3, re-
spectively. Now, define two new random variables
Y1 and Y2 as Y1 = T1 + T3 and Y2 = T2 + T3.
Then a random vector (Y1, Y2) follows a bivariate
Poisson distribution (BP) and denoted by (Y1, Y2) ∼
BP (λ1, λ2, λ3). The joint probability mass function
(pmf) is:

p(y1, y2;λ1, λ2, λ3) = exp{−(λ1 + λ2 + λ3)}
q∑

h=0

λy1−h
1 λy2−h

2 λh
3

(y1 − h)!(y2 − h)!h!
, (1)

where
q = min(y1, y2)

with
E(Y1) = λ1 + λ3, V ar(Y1) = λ1 + λ3,

E(Y2) = λ2 + λ3, V ar(Y2) = λ2 + λ3,
and λ3 is the measure of dependence between Y1
and Y2 and hence,

Cov(Y1, Y2) = λ3.

The correlation coefficient ρ, between Y1 and Y2 is
thereby

ρ =
λ3√

(λ1 + λ3)(λ2 + λ3)
.

If λ3 = 0, then the two random variables Y1 and Y2
become independent and the bivariate Poisson dis-
tribution reduces to the product of two independent
Poisson distributions, which is referred to as double
Poisson distribution suggested by [12] in 1992.

2.2. Diagonally Inflated Bivariate Poisson regres-
sion model

Bivariate Poisson distribution can model data with
positive correlation only, and the marginal distribu-
tions of BP are also Poisson therefore its marginals
cannot handle to model under or over-dispersion
in the data. Several BP mixture models either finite
or infinite have been suggested by researchers to
circumvent these problems but such models need
complicated computations making them hard to im-
plement for applications. [6] suggested an inflated
BP regression model, that not only allows easy com-
putation regarding estimation but also deals with
under and over-dispersion as well as a negative
correlation. In the case of diagonal inflated bivariate
modeling, a draw or a trail is represented by diag-
onal terms, hence, adding an inflation term on the
diagonal makes modeling more precise when there
is a considerable amount of draws. The joint pmf
of diagonally inflated bivariate Poisson distribution
(DIBP) is
PD(y1, y2;λ1, λ2, λ3) = I(y1=y2)

{
(1− ω)BP ((y1, y2

;λ1, λ2, λ3)) + ωD(y1, ν)}
+I(y1 ̸=y2){(1− ω)BP ((y1,

y2;λ1, λ2, λ3))
}
, (2)

or
PD(y1, y2;λ1, λ2, λ3) = I(y1=y2)

{
(1− ω) exp{

−(λ1 + λ2 + λ3)}
q∑

h=0

λy1−h
1 λy2−h

2 λh
3

(y1 − h)!(y2 − h)!h!
+

ωD(y1, ν)
}
+I(y1 ̸=y2){

(1− ω) exp{−(λ1 +

λ2 + λ3)}
q∑

h=0

λy1−h
1

(y1 − h)!

λy2−h
2 λh

3

(y2 − h)!h!

}
, (3)

where D(y1; ν) is a discrete distribution with pa-
rameter vector ν that may be chosen from Poisson,
Bernoulli, simple discrete distributions or the geo-
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metric distribution.

3. Methodology

Suppose we have a sample (Y1i, Y2i)
indep
∼

BP (λ1, λ2, λ3) for i = 1, . . . , n in order to proceed
for our analysis. We use the canonical link function
by letting λki = exp{x′kiβk}, where βk is a p × 1
vector of unknown regression coefficients and x′ki
represents the ith row of n×p design matrix xk with
p−1 covariates when the intercept is included in the
model for k = 1, 2, 3. Then the likelihood function
for BP is

L(β1, β2, β3) =

n∏
i=1

exp
{
−
(
exp{x′1iβ1}+

exp{x′2iβ2}+ exp{x′3iβ3i}
)}

qi∑
h=0

( [exp{x′1iβ1}]y1i−h

(y1i − h)!(y2i − h)!
×

[exp{x′2iβ2}]y2i−h[exp{x′3iβ3}]h

h!

)
.

(4)
Similarly, the likelihood for DIBP is,

L(β1, β2, β3, ω,D) =

n∏
i=1

[
I(y1i=y2i)

{
(1− ω)

(
exp{

−
(
exp{x′1iβ1}+ exp{x′2i

β2}+ exp{x′3iβ3}
)} qi∑

h=0( [exp{x′1iβ1}]y1i−h

(y1i − h)!
×

[exp{x′2iβ2}]y2i−h

(y2i − h)!
×

[exp{x′3iβ3}]h

h!

)
+ωD(y1i,

ν)
}
+I(y1i ̸=y2i)

{
(1− ω)(

exp
{
−
(
exp{x′1iβ1}+

exp{x′2iβ2}+ exp{x′3iβ3})} qi∑
h=0

[exp{x′1iβ1}]y1i−h

(y1i − h)!

× [exp{x′2iβ2}]y2i−h

(y2i − h)
×

[exp{x′3iβ3}]h

!h!

)}]
, (5)

where qi = min(y1i, y2i) for i = 1, . . . , n. Now log-
likelihoods for BP and DIBP are

logL(β1, β2, β3) = −
n∑

i=1

exp{x′1iβ1} −
n∑

i=1

exp{x′2i

β2} −
n∑

i=1

exp{x′3iβ3}+
n∑

i=1

log

[ q∑
h=0

[exp{x′1iβ1}]y1−h

(y1 − h)!
×

[exp{x′2iβ2}]y2−h exp{x′3iβ3}]h

(y2 − h)!h!

]
,

(6)
and

logL(β1, β2, β3, ω,D) =

n∑
i=1

log
[
I(y1i=y2i)

{
(1− ω)(

exp
{
−
(
exp{x′1iβ1}+

exp{x′2iβ2}+ exp{x′3iβ3})} q∑
h=0

[exp{x′1iβ1}]y1−h

(y1 − h)!

× [exp{x′2iβ2}]y2−h

(y2 − h)!
×

[exp{x′3iβ3}]h

h!

)
+ωD(y1,

ν)
}
+I(y1i ̸=y2i)

{
(1− ω)(

exp
{
−
(
exp{x′1iβ1}+

exp{x′2iβ2}+ exp{x′3iβ3})} q∑
h=0

[exp{x′1iβ1}]y1−h

(y1 − h)!

× [exp{x′2iβ2}]y2−h

(y2 − h)!
×

[exp{x′3iβ3}]h

h!

)}]
. (7)

3.1. Bayes Estimation

For the regression coefficients, we use vague or
diffuse proper priors with large variance βk =
(βk1, . . . , βkp) for k = 1, 2, 3. Specifically, these priors
have been formed with an extreme kind of spread
such as a Gaussian density but with an extraordi-
narily large variance. Diffuse or vague and weak
informative priors have been excessively used in re-
search articles [13] - [15]. Therefore, we also assume
that the priors on βkl are normally distributed with
means µ1l, µ2l, and µ3l, and variances σ2

1l, σ
2
2l and

σ2
3l respectively, for l = 1, . . . , p.
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3.2. Estimation procedures

Estimation of the proposed models will be done
in the Bayesian framework in conjunction with the
augmentation of data. To estimate the parameters,
the data augmentation algorithm can be used with
a sampling-based Gibbs sampler. Gibbs sampler is
proposed by [16] and is widely used as a common
method in Bayesian computation [17] - [18]. We use
Gaussian priors βk’s with mean µk and variance σk
respectively for k = 1, 2, 3 for both BP and DIBP
models. We use beta priors for ω with α and γ, for
DIBP, to make theoretical results or derivations less
complicated. For the same purpose of estimation
of these parameters, we can also use some other
conjugate priors like Inverse Gamma as well as non-
informative priors. Here the posteriors for BP and
DIBP are,

π(β1, β2, β3) =
exp{−1

2(
β1−µ1

σ1
)2}

√
2πσ1

exp{−1
2(

β2−µ2

σ2
)2}

√
2πσ2

exp{−1
2(

β3−µ1

σ3
)2}

√
2πσ3

n∏
i=1

(
exp

{
−
(
exp

{x′iβ1}+ exp{x′iβ2}+ exp{x′iβ3}
)}

q∑
h=0

[exp{x′iβ1}]y1i−h[exp{x′iβ2}]y2i−h

(y1i − h)!(y2i − h)!

× [exp{x′iβ3}]h

h!

)
, (8)

π(β1, β2, β3, ω,D) = ωα−1(1− ω)γ−1 ×
exp{−1

2(
β1−µ1

σ1
)2}

√
2πσ1

×

exp{−1
2(

β2−µ2

σ2
)2}

√
2πσ2

×

exp{−1
2(

β3−µ1

σ3
)2}

√
2πσ3

×
n∏

i=1

[
I(y1i=y2i)

{
(1− ω)

(
exp{

−(exp{x′iβ1}+ exp{x′iβ2}+

exp{x′iβ3})
} q∑
h=0

[exp{x′iβ1}]y1i−h

(y1i − h)!

[exp{x′iβ2}]y2i−h

(y2i − h)!

[exp{x′iβ3}]h

h!

)
+ωD(y1i, ν)

}
+I(y1i ̸=y2i)

{
(1−

ω)
(
exp

{
−(exp{x′iβ1}+ exp{x′i

β2}+ exp{x′iβ3})
} q∑
h=0

[exp{x′iβ1}]y1i−h[exp{x′iβ2}]y2i−h

(y1i − h)!(y2i − h)!

× [exp{x′iβ3}]h

h!

)}]
. (9)

The full conditionals for βk in the case of the BP
model are

π(β1l;β−1l, β2, β3) ∝ exp{−1

2
(
β1l − µ1

σk
)2}

n∏
i=1

exp{− exp{x′iβ1l}}[exp{x′iβ1l}]y1i
q∑

h=0

( exp{x′iβ3}
exp{x′iβ1l} exp{x′iβ2}

)h

× 1

(y1i − h)!(y2i − h)!h!
, (10)

and for β1, β2 and β3 that are equivalent to the
following,

π(β1l;β−1l, β2, β3) ∝ exp{−1

2
(
β1l − µ1

σ1
)2}

n∏
i=1

e−λ1i

λy1i
1i

q∑
h=0

( λ3i

λ1iλ2i

)h
×

1

(y1i − h)!(y2i − h)!h!
, (11)
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π(β2l;β−2l, β1, β3) ∝ exp{−1

2
(
β2l − µ2

σ2
)2}

n∏
i=1

e−λ2iλy2i
2i

q∑
h=0

( λ3i

λ1iλ2i

)h

1

(y1i − h)!(y2i − h)!h!
, (12)

π(β3l;β−3l, β1, β2) ∝ exp{−1

2
(
β3l − µ3

σ3
)2}

n∏
i=1

e−λ3i

q∑
h=0

( λ3i

λ1iλ2i

)h

1

(y1i − h)!(y2i − h)!h!
, (13)

and for λ3 full conditional is

π(λ3;β1, β2) ∝ λδ−1
3 exp−ϵλ3

n∏
i=1

e−λ3i

q∑
h=0

( λ3i

λ1iλ2i

)h

1

(y1i − h)!(y2i − h)!h!
. (14)

Now the full conditionals for βk in the case DIBP
model are
π(β1l;β−1l, β2, β3, ω,D) ∝ exp

{
−1

2
(
(β1l − µ1

σ1
)2
}

n∏
i=1

[
I(y1i=y2i)

{
(1− ω)(

exp
{
−
(
exp{x′iβ1}+

exp{x′iβ2}+ exp{x′iβ3})}
[exp{x′iβ1l}]y1i ×

[exp{x′iβ2}]y2i ×
q∑

h=0

( exp{x′iβ3}
exp{x′iβ1l} exp{x′iβ2}

)h

1

(y1i − h)!(y2i − h)!h!

)
+

ωD(y1i, ν)
}
+I(y1i ̸=y2i){

(1− ω)
(
exp

{
−
(
exp

{x′iβ1}+ exp{x′iβ2}+

exp{x′iβ3}
)}

[exp{x′iβ1l}]y1i

[exp{x′iβ2}]y2i
q∑

h=0( exp{x′iβ3}
exp{x′iβ1l} exp{x′iβ2}

)h

1

(y1i − h)!(y2i − h)!h!

)]
,

(15)
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and for β1, β2, β3 that are equivalent to the follow-
ing,

π(β1l;β−1l, β2, β3, ω,D) ∝ exp
{
−1

2
(
(β1l − µ1

σ1
)2
}

n∏
i=1

[
I(y1i=y2i)

{
(1− ω)(

exp
{
−(λ1i + λ2i

+λ3i)
}
×λy1i

1i × λy2i
2i

q∑
h=0

( λ3i

λ1iλ2i

)h
×

1

(y1i − h)!(y2i − h)!h!

)
+ωD(y1i, ν)

}
+I(y1i ̸=y2i){

(1− ω)
(
exp

{
−(λ1i +

λ2i + λ3i)
}
λy1i
1i × λy2i

2i

q∑
h=0

( λ3i

λ1iλ2i

)h
×

1

(y1i − h)!(y2i − h)!h!

)]
,

(16)

π(β2l;β−2l, β1, β3, ω,D) ∝ exp
{
−1

2
(
(β2l − µ2

σ2
)2
}

n∏
i=1

[
I(y1i=y2i)

{
(1− ω)(

exp
{
−(λ1i + λ2i +

λ3i)
}
λy1i
1i λ

y2i
2i

q∑
h=0( λ3i

λ1iλ2i

)h
×

1

(y1i − h)!(y2i − h)!h!

)
+ωD(y1i, ν)

}
+I(y1i ̸=y2i){

(1− ω)
(
exp

{
−(λ1i +

λ2i + λ3i)
}
λy1i
1i λ

y2i
2i

q∑
h=0

( λ3i

λ1iλ2i

)h
×

1

(y1i − h)!(y2i − h)!h!)}]
(17)

and
π(β3l;β−3l, β1, β2, ω,D) ∝ exp

{
−1

2
(
(β3l − µ3

σ3
)2
}

n∏
i=1

[
I(y1i=y2i)

{
(1− ω)(

exp
{
−(λ1i + λ2i +

λ3i)
}
λy1i
1i λ

y2i
2i

q∑
h=0( λ3i

λ1iλ2i

)h 1

(y1i − h)!
1

(y2i − h)!h!

)
+ωD(y1i,

ν)
}
+I(y1i ̸=y2i)

{
(1− ω)(

exp
{
−(λ1i + λ2i +

λ3i)
}
λy1i
1i λ

y2i
2i

q∑
h=0( λ3i

λ1iλ2i

)h
×

1

(y1i − h)!(y2i − h)!h!

)}]
,

(18)
where β−kl = {βk1, βk2, ..., βkl−1, βkl+1, ..., βkp} or
β−kl is a (p− 1)× 1 vector with lth component being
excluded from βk. For ω, the full conditional is
π(ω;β1, β2, β3, D) ∝ ωα−1(1− ω)γ−1

n∏
i=1

[
I(y1i=y2i)

{
(1− ω)(

exp
{
−(λ1i + λ2i

+λ3i)
}
×λy1i

1i × λy2i
2i

q∑
h=0

( λ3i

λ1iλ2i

)h
×

1

(y1i − h)!(y2i − h)!h!

)
+

ωD(y1i, ν)
}
+I(y1i ̸=y2i){

(1− ω)
(
exp

{
−(λ1i + λ2i

+λ3i)
}
×λy1i

1i × λy2i
2i ×

q∑
h=0

( λ3i

λ1iλ2i

)h
×

1

(y1i − h)!(y2i − h)!h!

)}]
.

(19)
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Finally the full conditional for λ3 is

π(λ3;β1, β2, ω,D) ∝ λδ−1
3 e−ϵλ3

n∏
i=1

[
I(y1i=y2i){

(1− ω)(
exp

{
−(λ1i + λ2i + λ3i)

}
λy1i
1i λ

y2i
2i

q∑
h=0

( λ3i

λ1iλ2i

)h
×

1

(y1i − h)!(y2i − h)!h!

)
+ωD(y1i, ν)

}
+I(y1i ̸=y2i){

(1− ω)
(
exp

{
−(λ1i +

λ2i + λ3i)
}
×λy1i

1i × λy2i
2i

q∑
h=0

( λ3i

λ1iλ2i

)h
×

1

(y1i − h)!(y2i − h)!h!

)}]
.

(20)

4. Results and discussions

We conduct real data analysis by using BP and
DIBP models to examine their performances re-
garding parameters. We analyze the data for En-
glish Premier League (EPL) soccer data for the
season 2015-2016. We have taken the soccer data
from www.espn.com. The data set consisted of two
independent variables, effective shots, and fouls.
Whereas the dependent variables are the number of
goals at home y1 and the number of goals away y2.
In this analysis, we ran the Gibbs sampler for 11,000
iterations and we compute the posterior means and
95% Highest Posterior Density (HPD) intervals for
the parameters after the initial 1,000 iterates are dis-
carded as a burn-in, the computed statistical values
are reported in Table ?? and Table ??. We noted that
the signs of the estimates are congruent with what
we would expect from the analysis perspectives of
the performances of soccer teams. In Table ?? we
can observe that, as the effective shots β12 and β22
increase the chances of goals across home y1 and
away y2 also increases. There is a negative sign with
the estimated value of parameters for fouls β13 and
β23 i.e. natural because the increase in fouls has an
inverse effect on the number of goals. However, if
we compare the estimated values of the parameter
between BP and DIBP the BP overestimates β22 for
away home i.e. it gives β12 < β22 but the expected

values should show a reverse relation i.e. β22 ≤ β12
because teams performed well at home than away.
The expected values for fouls for the home should
be lower in the home than away but the estimated
values of fouls for BP are β23 ≤ β13 that misleads
interpretations. However, the estimated values in
the case of DIBP for both parameters are β12 > β22
and β13 < β23 as per expectations. Hence on the
basis of estimated values of DIBP, we can conclude
that teams performed well in the first half of the
season 2015-2016 EPL. Table ?? represents statistics
for the second half of the season 2015-2016. We
observe the same type of estimated values as we
observed in Table?? i.e. as the effective shots (β12
and β22) increase so does the chances of goals across
home y1 and away y2. But we can observe a negative
sign with the estimated value of the parameter
for fouls β13 in home goals case y1 but a positive
value observed for β23 that can be misleading to the
interpretations. BP results again overestimate the
relation by showing that performance in the case
of away goals and effective shots is stronger than
at home. However, the estimated values for both
cases home and away DIBP models performed well
by showing some natural outcomes, i.e. a negative
value of fouls parameter showing that an increase in
fouls has a negative effect on the number of goals,
whereas positive values β12 and β22. If we look at
the estimated values of effective shots parameters
β12 and β22 in the case of DIBP both parameters
fulfill the expected condition, i.e. β12 > β22 and
β13 < β23 as per expectations. Hence on the basis of
estimated values of DIBP, we conclude that teams
performed well in the second half of the season
2015-2016 too and teams performed well at home-
ground than away.

5. Conclusion

In this research work, we have focused on the com-
parison of two bivariate Poisson regression models
i.e. bivariate Poisson and Diagonally Inflated bivari-
ate Poisson. We analyze both methods to compute
efficient parameters by applying them to English
Premier League football data for the season 2015-16.
We observed statistics that both models performed
well but DIBP is a better option to analyze inflated
data. DIBP successfully deals with correlated data
and we can avoid under or over-estimation of sta-
tistical values. We can apply these models in other
fields e.g. medical and health, risk analysis research,
geological surveys, investment analysis, etc to deal
with the bivariate data.
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TABLE 1: Parameter estimates based on EPL data
BP DIBP

Dependent
variable

Parameter Post-mean 95% HPD Post-mean 95% HPD

β11 -0.2178 (-0.6877, 0.2924) -0.0108 (-0.1978, 0.1939)
y1 β12 0.1428 (0.1039, 0.1787) 0.0347 (-0.1529, 0.2312)

β13 -0.0104 (-0.0512, 0.0314) -0.0536 (-0.2160, 0.0781)
λ3 0.0121 (0.0002, 0.0745) 0.0018 (0.0001, 0.0086)
ω 0.1093 (0.0026, 0.3544)
β21 -0.8140 (-1.4036, -0.2659) -0.0108 (-0.1988, 0.1907)

y2 β22 0.2421 (0.1877, 0.2973) 0.0344 (-0.1553, 0.2306)
β23 -0.0009 (-0.0410, 0.0435) -0.0540 (-0.2173, 0.0783)
λ3 0.0944 (0.0105, 0.1975) 0.0010 (0.0000, 0.0033)
ω 0.1108 (0.0031, 0.3685)

TABLE 2: Parameter estimates based on EPL data
BP DIBP

Dependent
variable

Parameter Post-mean 95% HPD Post-mean 95% HPD

β11 -0.7589 (-1.5153,-0.1083) -0.0286 (-0.3038,0.3182)
y1 β12 0.2033 (0.1379,0.2607) 0.0125 (-0.2290,0.2901)

β13 -0.0071 (-0.0493,0.0393) -0.0525 (-0.2574,0.1956)
λ3 0.1460 (0.0008,0.3450) 0.0010 (0.0000,0.0039)
ω 0.1093 (0.0005,0.4824)
β21 -1.2409 (-2.2226,-0.1445) -0.0285 (-0.3073,0.3193)

y2 β22 0.2208 (0.1449,0.3039) 0.0122 (-0.2289,0.2893)
β23 0.0185 (-0.0453,0.0721) -0.0530 (-0.2592,0.1922)
λ3 0.1868 (0.0041,0.4006) 0.0023 (0.0001,0.0202)
ω 0.1108 (0.0007,0.4815)
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