
QUEST RESEARCH JOURNAL, VOL. 22, NO. 02, PP. 01–09, JUL–DEC, 2024 1

Collision Avoidance in Dynamic Environment: An ICS-Checker Using Ex-
tremal Trajectories

Khalil Muhammad Zuhaib1,*, Aneela Pathan1, Abid Ali Shah2, Junaid Iqbal Bhatti3, Arsalan Ahmed
Soho1,
1Department of Electronic Engineering, The University of Larkano, Larkana, Pakistan
2Department of Electrical Engineering, The University of Larkano, Larkana, Pakistan
3Department of Mechanical Engineering, The University of Larkano, Larkana, Pakistan
*Corresponding author: kmzuhaib@uolrk.edu.pk

Abstract

In this article, we have addressed the problem of navigating a vehicle with kinodynamic constraints in an environment
where the trajectory of dynamic obstacles can be partially predictable. This study introduces an Inevitable state-
checker named ICSe-Test, which is an approach grounded in the concept of Inevitable Collision States (ICS). This
primary contribution of the study, unlike the state of the art, is the selection of a fixed number of maneuvers for the
ICSe-Test, regardless of the number of dynamic obstacles present in the environment. Further, the paper proposed
a collision avoidance scheme based on ICSe-Test, and it is compared with the present approaches. The results show
the superior performance of the proposed Inevitable state-checker using extremal trajectories.

Keywords—Mobile Robot, Collision Avoidance, Inevitable Collision State, Dynamic Environment, Robot Navigation

✦

1 Introduction

In today’s modern world, most robotics applications
involve mobile robot navigation in a dynamic

environment where there are other moving agents
like humans, vehicles, and other robots. Such
environments are uncertain due to the presence of
multiple moving obstacles whose behavior is only
partially predictable (if at all) [1-3]. The further
application of autonomous navigation of robots
is spatial exploration. In such applications, the
robot does not have complete information about its
environment due to the limitations of its onboard
sensors. In these applications, partial motion plans
are planned instead of a complete plan for the goal
and or the sub-goal [4,5]. To successfully complete
the given task, the robot has to safely navigate among
obstacles by guaranteeing its safety and that of its
surroundings.
In dynamic environments, collision-free decisions are
to be made in a limited time while considering the
future motion of the obstacles and appropriate look

ISSN: 2523-0379 (Online), ISSN: 1605-8607 (Print)
DOI: https://doi.org/10.52584/QRJ.2202.01
This is an open access article published by Quaid-e-Awam
University of Engineering Science & Technology, Nawab-
shah,Pakistan under CC BY 4.0 International License.

ahead [6-7]. In making such decisions, there are two
issues that need to be addressed. The first issue is
concerned with estimating the future behavior of
moving obstacles over future time intervals. Various
works can be found in the literature on the said
problem [8-10]. After obtaining and examining the
future model, the next challenging issue is to analyze
it to develop a safe navigation strategy. This paper
focuses on addressing this challenge by building on
the idea of Inevitable Collision States (ICS). The
concept of ICS was first presented in [11,12], and it
defines ICS as a state where a collision is inevitable,
regardless of the vehicle’s future trajectory. In theory,
finding whether a state qualifies as an ICS involves
evaluating all possible infinite-length trajectories a
robot could follow from that state [13]. This paper
proposes a conservative ICS test approach that
considers only four trajectories of finite length based
on Velocity Obstacle (VO) [14,15] reasoning. Based
on it, a collision avoidance approach is devised that
ensures the robot will always be in a state where
there is at least one future trajectory that allows the
robot to escape the collision. This paper will also
present the result of extensive simulation trials of the
proposed ICS test and collision avoidance algorithm,

QUEST RESEARCH JOURNAL, VOL. 22, NO. 02, PP. 01–09, JUL–DEC, 2024 2

and present the comparative analysis of these results
with other approaches.

2 Related Work
The concept of ICS highlights the difficulty of en-
suring collision avoidance, as it demands predicting
the environment’s future evolution while accounting
for potentially infinite computational overhead. Since
such conditions are nearly unattainable in real-world
scenarios and the characterization of ICS is highly
intricate, many researchers have explored relaxing the
ICS requirements. Some of the early work for collision
avoidance is based on τ -safety; approaches that com-
pute future trajectories that are safe over the duration
of τ seconds (hopefully significant to compute an
updated safe trajectory) [16,17]. Planning a path that
is collision-free during some time period of τ seconds
does not guarantee safety. Because, let’s say we are
somehow able to compute a path that is collision-
free and is τ seconds long, the question is, what will
happen at the end of this trajectory? What if it leads
the system toward the wall at high speed? A collision
will eventually occur. So selecting a τ -safe path cannot
guarantee our safety. Some other work is based on
evasive trajectories: approaches that ensure that the
robot will always be in a state where it can carry
out an evasive maneuver, like a braking maneuver for
a car-like robot or a circling maneuver for an aerial
vehicle [18-20]. In [21], the author explores the viability
theory for the safe motion of systems with multiple
motion constraints. In [22], the authors proposed the
Imitating Maneuvers (IM) approach that ensures that
the robot remains in states where it is possible for
the robot to attain and retain zero relative velocity
with respect to moving obstacles. In this approach,
the computation required to find out whether a state
is ICS increases with the number of moving obstacles,
which is a disadvantage. This is because the set of
control sequences for the ICS test increases with the
number of dynamic obstacles. In this article, we have
proposed extreme trajectories/sequences for the ICS
test. The advantage of the approach is that the control
sequences for the ICS test are fixed and independent
of the number of Dynamic obstacles.

3 Problem Statement
When planning online for a dynamic environment,
the model of dynamic obstacles is considered to be
valid over the short time horizon. So, robot navigation
requires running sensing, planning, and execution cy-
cles. For planning, a time slot is allocated to compute

Fig. 1: Sense Plan Act Synchronization Scheme

the solution to the goal. However, in general, the
computation of a complete trajectory of the robot to
the goal point cannot be guaranteed. A sense plan, an
act scheme for navigation in a dynamic environment,
is explained below:
So we are concerned with a partial plan, planned over
a specific time horizon τ > δtp that leads the system
closer to a given goal. A plan computed in every
planning cycle, say (ti−1, ti), is executed in the next
cycle (ti, ti+1) for a time interval tp < τ seconds long,
as shown in Figure 01. In order to safely navigate the
robot, the plan computed in every planning cycle, say
(ti−1, ti), for the execution in the next cycle (ti, ti+1)
should not result in an Inevitable-Collision-State pass
ti+1. Now, we redefine the problem as follows: The
problem is to compute a plan to be executed during
(ti, ti+1) that is (a) collision-free, (b) does not result in
an inevitable collision state past ti+1, and (c) choosing
an optimal partial trajectory in every planning cycle
that leads towards the goal point.

4 Inevitable Collision States
We will begin by revisiting the velocity obstacle con-
cept, as outlined in [23] and [24]. Based on this
concept, the Inevitable Collision states are defined
for a kinodynamically constrained system, which will
eventually lead us to introduce the concept of ICS
testing using extremal sequences.

4.1 Velocity Obstacle (Revisited)
Velocity Obstacle V Oto computed at time t = t0
represents the set of absolute velocities that would
lead the robot to collide with the neighboring obstacle
within the time window [to,] [23-25]. Selecting a single
velocity outside V Oto at t = to guarantees no collision
at all times as long as the obstacle remains on its
current trajectory. V Ot0 is constructed in terms of the

QUEST RESEARCH JOURNAL, VOL. 22, NO. 02, PP. 01–09, JUL–DEC, 2024 3

Fig. 2: The temporal component of velocity obstacle
V Ot0(t) at time t

Fig. 3: Velocity Obstacle shown as the union of its
temporal component

union of temporal elements V Ot0(t), which is the set of
absolute velocities that would lead the robot to collide
with an obstacle at a specific time t. Let the set of
points held by a planner obstacle at time t[to,] be given
by B(t), and the obstacle’s general trajectory is c(t).
Then, a temporary component can now be expressed
as follows:

V Ot0(t) = c(t)
⊕

B(t)
t− t0

(1)

Where c(t)B(t) represents the Minkowski sum of c(t)
and B(t), as shown in Figure 2.

Now V Ot0 can be defined in terms of V Ot0(t) as
follows:

V Ot0 =
⋃

t∈[to,∞]
V Ot0(t) (2)

Geometrically, V Ot0 is of the shape of a warped
cone in velocity space, as can be seen in Figure 3.

4.2 System with kinodynamic constraints
If the robot’s state is such that its absolute velocity
is in V Ot0 , then the collision will eventually occur if

Fig. 4: The kinematic car-like model. The states are
given by the position vector pa, orientation angle θ,
and steering angle ϕ. The wheelbase is represented
by L. The instantaneous velocity v aligns with the
direction of the rear wheels. Here, ICR stands for
Instantaneous Center of Rotation.

it continues to move with its absolute velocity into
the future. To avoid a collision, it is desirable for the
robot to select its new absolute position outside the
V Ot0 instantaneously (at t = t0). A mobile robot with
kinodynamic constraints can’t do so. For example,
for a car-like robotic system, as in Figure 04, the
instantaneous velocity can only be in the direction of
the rear wheels. However, it is possible to maneuver
the kinodynamically constrained system to attain any
absolute velocity over time. Now we will define an ICS
for a kinodynamically constrained system in terms of
a velocity obstacle.

4.3 Inevitable Collision State (ICS)
Let s ∈ S be the system state at time t, and let U be a
bounded control space. Let us denote a state transition
equation of a robot in general form as:

ṡ = f(s, u) (3)

where u ∈ U . Let ũ : [0, tf] −→ U denote the
control sequence in time for intervals of fixed duration
δt. All combinations of control sequences possible over
a time interval [0, tf] are represented by a set Ũ . By
integrating the state transition (3) from t = 0, for
sequence ũ we can obtain a series of states ordered
over time, i.e., a curve, in S × T where T represents
the time dimension. The state obtained by integrating
(03) at time t for input ũ is represented by s̃(s(0), ũ, t).
In order to formally define ICS in terms of velocity
obstacle, we will represent the state by s = (p, v, z̃),
where the position is represented by p, the cartesian
velocity is represented by v and z̃ is the rest of the
state parameters. Now we can define ICS as follows:

QUEST RESEARCH JOURNAL, VOL. 22, NO. 02, PP. 01–09, JUL–DEC, 2024 4

Definition 01(ICS): A state s(0) is an inevitable
collision state, if ∀ũ ∈ Ũ there does not exist a time
t ∈ [0,∞] and state s̃(s(0), ũ, t) such that v /∈ V 0t0.

According to definition 01, if for a state of the
robot, there exists no sequence in Ũ that can move
the absolute velocity of the system outside the velocity
obstacle, then this state will be an inevitable collision
state. In the next section, we will discuss the proposed
ICS checking approach named as ICS test.

5 ICT Test
In actual theory, checking whether or not a given state
is an ICS requires us to examine state trajectories that
a system can follow from a given state for all possible
control sequences ∀ũ ∈ Ũ of infinite length in time
(tf = ∞). Examining all the trajectories for infinite-
duration control sequences is not feasible. However,
a conservative approximation of the ICS set can be
found with a limited number of control sequences
within Ũ . Considering a conservative estimate of an
actual ICS set will not lead us to compromise on safety
[22]. Now we will discuss our approach to the ICS-test
that considers only extreme trajectories of finite length
for checking a state for ICS, in a dynamic environment.

5.1 Extremal Sequences
The conservative estimate ICS in terms of V Ot0 allows
us to check whether a state s is an ICS state by
considering a subset of U . We can consider only those
sequences that can bring the velocity vector of the
system out of V Ot0 in a minimum amount of time.
Such time-optimal sequences will be the solution to
the following minimization problem:

min
ũ∈U

∫ t1

0
1dt (4)

Subjected to robot dynamics in (3) and control
constraint u ∈ U , with the initial conditions:

v0 ∈ Vt0

and final conditions

v1 /∈ Vt1

Where vo and v1 are the Cartesian velocities at t = t0
and t = t1 respectively, (to < t1).

The solution to such a time minimization problem
is bang-bang control sequences [26]. Such sequences

can be integrated to a point in time into the future
when the velocity of the system moves outside the
velocity obstacle. To explain it in detail, let us now
consider a case study of a robot with car-like dynamics.

5.2 Case Study Car-Like Robot
Consider a car-like robot A with nonholonomic con-
straints, whose steering angle ϕ and linear acceleration
α̇ is directly controlled. Similar to [15], the curvature
uϕ is taken as a control input from which the angle
of the steering ϕ can be computed as ϕ = tan−1uϕL.
In this equation, L denotes the wheelbase of the car-
like robot. The state s is expressed as a tuple (p, α, θ),
where the robot rear wheel axle position is p = [xy]T ,
the robot speed is α, and its orientation is θ. The
motion is governed by:

ẋ = α cos θ

ẏ = αsinθ

θ̇ = αuϕ

α̇ = ua

where |ua| ≤ umax
a and |uϕ| ≤ umax

ϕ The instanta-
neous velocity of the robot is v = [ẋ ẏ]. Let us explain
the procedure by considering a case shown in Figure 05
(a).

Figure 5(a) shows an obstacle Bj with center pb at
time t = 0 moving with velocity vb towards A with
state s(0), for which the corresponding linear velocity
is directed along the positive y-axis. Figure 5(b) shows
that the relative velocity vab(0) ∈ RV O

s(0)
j at t = 0,

where relative velocity obstacle, RV O = V O0 − vb. If
the linear relative velocity of A remains unchanged in
the future, then the collision will eventually occur.

Let BO+
j be the set of points occupied by an obsta-

cle B+
j with the center at the origin, as shown in Figure

5(c). Let pab = p−pb be the relative position of A w.r.t.
obstacle B+

i at time t. The obstacle and robot will be
in collision at the time t if pab(t) ∈ BO+

j . We can
find out whether a given state s(0) at t = 0 is ICSR

by checking only for those sequences, that can change
vab(0) ∈ RV C

(s(0)
j to vab(t) ∈ RV C

s(t)
j in minimum

possible time t. This problem is solved using the bang-
bang principle. Integrating states using extremal con-
trol sequences (ũ+R, ũ+L, ũ−R, ũ+L) will result in four
extremal trajectories, denoted by p+R

ab , p+L
ab , p−R

ab , p−L
ab ,

where + and – denote ua = umax
a and ua = −umax

a are
applied respectively, L and R denote uϕ = +umax

ϕ and
uϕ = −umax

ϕ are applied respectively, see Figure 5(c).
It can be seen that two of the four extremals penetrate
the obstacle and two do not. For extremal p+R

ab , the

QUEST RESEARCH JOURNAL, VOL. 22, NO. 02, PP. 01–09, JUL–DEC, 2024 5

time t at which vab(t) /∈ RCO
s(t)
j is smallest compared

to all possible collision-free trajectories (all trajectories
that pass between p+R

ab and p+L
ab).

Figure 6(a-b) shows a case in which all trajecto-
ries except one extremal penetrate the obstacle. Any
motion forward without escaping the velocity obstacle
will result in a state that will be ICS, as shown in
Figure 6 (c) all four extremal trajectories penetrate
the obstacle.

In order to know whether a given state s(0) at t = 0
is ICSR(Bj), we integrate extremal up to a point in
time t where extremal either penetrate the obstacle
BO+

j or the relative velocity vab(t) /∈ RV O
s(t)
j at time

t (detail are in Algorithm 01). If there exists at least
one extremal such that vab(t) /∈ RV O

s(t)
j at time t,

then the given state is not ICSR(Bj).
The time over which trajectories are required to be

integrated will depend upon obstacle size, its velocity,
and the given states of the system. However, we can
set a maximum limit on the duration of integration.

Algorithm 01 named ICSe − test, summarizes all
the steps needed to test a given state for ICS. The
input to algorithm 01 is the state of the system, set Bj

for N moving obstacles, and their future trajectories
cj(t). If the algorithm finds that the robot’s current
velocity is in the computed velocity obstacle, then the
set of extremal control sequences E is selected from Ũ
for checking whether or not the given state s is an ICS.

Algorithm 1 ICSe-test
Input: s, cj(t), Bj

Output: Boolean output
0: ICS(B)← True
0: if v /∈

⋃
j∈N VOs(t0) then

0: return ICS(Bj) = False
0: else
0: Select E ⊂ Ũ
0: for all u ∈ E do
0: for i = 0 to m do
0: Compute si+1 = si +

∫ ti+1
ti

f(si, ui) dt

0: if vi+1 /∈
⋃

j∈N VOs(t0) then
0: return ICS(Bj) = False
0: end if
0: end for
0: end for
0: return ICS(B)
0: end if=0

6 Safe Navigation
Algorithm 02 provides a summary of the steps involved
in calculating the set of controls Usafe, which will lead

to states at time δt that are not ICS. To do so, the
sampling of the system’s control space is done in such
a way that it always includes the extremals. In this
way, it is guaranteed that there will exist at least one
u ∈ U that will lead the system to states that are
not ICS. The states obtained s() by integrating the
state equation of the system for all control inputs u
are tested for ICS. Set Usafe will consist of all control
inputs that will not lead the system to ICS.

Algorithm 2 Computing Usafe
Input: s(0), cj(t), Bj

Output: Usafe

0: Usafe ← ∅
0: Sample U = {u1, u2, . . . , un}
0: for all ui ∈ U do
0: s(δt) = s̃(s(0), ui, δt)
0: if s̃(s(0), ui, [0, δt]) is collision-free then
0: if ICS-Check(s(δt)) = False then
0: Usafe ← Usafe ∪ u
0: end if
0: end if
0: end for=0

To navigate the robot toward the goal, a control
input in Usafeis to be selected that leads the robot
closer to the goal, pg. A weighted function of cost built
on the distance matrix is computed for the convergence
to the goal. Algorithm 03 mentions the step-by-step
procedure for the selection of such a control sequence.

Algorithm 3 Find the Best Safe Control Sequence
Input: Usafe
Output: ui

0: min←∞
0: for all ui ∈ Usafe do
0: if ∥f(h(s, ui, δt))− pg∥ < min then
0: min← ∥f(h(s, ui, δt))− pg∥
0: arg min← ui

0: end if
0: end for
0: return arg min =0

7 Implementation and Results

In this section, the implementation of our proposed
approach is presented in a simulated environment. To
validate the effectiveness of our approach, this section
will compare its performance relative to other existing
approaches.

QUEST RESEARCH JOURNAL, VOL. 22, NO. 02, PP. 01–09, JUL–DEC, 2024 6

Fig. 5: In (a), robot A is headed toward a collision with an obstacle Bj , (b) shows the relative velocity obstacle
RV O, and (c) shows the four extremal trajectories.

Fig. 6: In (a) robot A is headed toward a collision with an obstacle Bj , (b) shows a case in which the robot is in
a state where all extremal trajectories except one will penetrate the obstacle, (c) shows a case in which robot is
in a state where all extremal trajectories penetrate the obstacle.

7.1 Implementation Details and Simulation
Setup

The simulated experiment was conducted by consider-
ing a car-like robot kinodynamic model as was consid-
ered in section 5.2. The maximum linear acceleration
umax

a and curvature umax
ϕ is are set to be 1 unit/s2 and

1.5 unit−1 respectively. The maximum system speed
was set to be 2 units. The robot was of disc shape
with its radius set equal to 1 unit. The environment is
constructed for simulation, which is a square region 22
units in length and 22 units in width. The environment
had several disc-shaped moving obstacles of radius set
to 1. In this open environment, the obstacles were

set to move along specified paths, i.e., straight lines
and arcs, with a maximum speed limit of ± 1 unit/s.
The obstacles are capable of changing their path, and
the probability that they can change their trajectory
within one second was set equal to 0.1. A scan cycle of
0.05 seconds and a duration τ of 3.5s was used. Figure
07 shows several simulation snapshots captured at
different moments, displaying a green robot navigating
through multiple moving red obstacles to reach the
yellow-marked goal position. The technique was built
in C++, and the simulations were run on a Core i5-
3550 machine with 4GB of RAM.

QUEST RESEARCH JOURNAL, VOL. 22, NO. 02, PP. 01–09, JUL–DEC, 2024 7

Fig. 7: Collision avoidance in a dynamic environment
where obstacle has free will. Several simulation snap-
shots captured at different moments display a green
robot navigating through multiple moving red obsta-
cles to reach the yellow-marked goal position. The
probability that the obstacle will change its current
trajectory within one second is 0.1.

7.2 Comparative analysis
This section will compare two other cutting-edge colli-
sion avoidance techniques with the navigation strategy
based on our suggested ICS test approach, i) Time-
varying dynamic window [27] and ii) ICS-Avoid [19].
Both strategies are popular and frequently applied in
practical settings. The performance of each approach
is tested and compared in terms of four sets of param-
eters, namely Collision on average, Average number
of maneuvers used to test a state, computation time
for ICS-check, and success rate at which the robot ac-
complishes the task of reaching the goal point without
running into any obstacle.

7.2.1 Experiment 01 – ICSe-Test Comparison
For ICSe-Test comparison, the probability that the
object would change its current path in the future
was first set to 0. The information about the future
trajectory was made available to the three schemes
for 1, 3, and 5 seconds. Each simulation run lasted
two minutes. Table 1 displays the average number of
collisions that occur between robot A and obstacle Bj

during the run for 20 trials for each time horizon.
In Table 1, TVDW shows the weakest performance

of the three. This is due to the fact that it only makes
limited use of the obstacle trajectory’s future informa-
tion, limiting itself to a tiny portion of the available
time. The ICS-Avoid and ICSe-Test showed similar
performance. However, the calculation time needed
to check the state for ICS is the primary benefit of
ICS-Test over ICS-Avoid. As the number of obstacles
increases, the number of trajectories required to test

TABLE 1: Average Collision Rate Comparison for
different values of τ

Schemes
Collisions on Average
τ=1s τ=3s τ=5s

TVDW 9 5 3
ICS-Avoid 3.2 0 0
ICSeTest 3 0 0

Fig. 8: Number of maneuvers for ICS check vs number
of obstacles

the state for ICS-Avoid increases, as shown in Figure
8. Which in turn increases the computation time of
ICS-Avoid to test the state for ICS.

In Figure 9, the time taken by ICSe-Test and ICS-
Avoid to compute where the state s is ICS or not as the
number of obstacles increases is shown. It can be seen
that ICSe-Test computation time is less than ICS-
Avoid.

In summary, ICS-Avoid and ICSe-Test have bet-
ter performance relative to TVDW when compared
in terms of the number of collisions on average.
However,ICSe-Test has an edge over ICS-Avoid as it

Fig. 9: Average time taken to compute ICS for a given
state as the number of obstacles varies

QUEST RESEARCH JOURNAL, VOL. 22, NO. 02, PP. 01–09, JUL–DEC, 2024 8

Fig. 10: Success rate with varying numbers of moving
obstacles

takes less time to compute whether a given state is an
ICS or not. It is a big advantage when used in real-
time collision avoidance schemes, as shown in the next
simulated experiment’s result.

7.2.2 Experiment 02 – Navigation towards the goal
The chance that the obstacle may alter its trajectory
in less than a second was now set at 0.05. For all three
schemes, the future trajectory was made available for
3.5 sec. Each scheme is employed in a cycle plan act
cycle to navigate the robot towards the goal. 20 Trials
have been done. Figure 10 shows the success rate,
which is the proportion of trials in which the robot
successfully navigates without colliding from the start
point to the target point.

It can be seen in Figure 10 that TWDW has the
lowest success rate. The success rate of the navigation
approach using ICS-Avoid is less than that which uses
ICSe-Test. This is because when an obstacle changes
its path suddenly, the ICS-Avoid-based approach takes
a long time to respond due to the large computation
time required for computing ICS.
The above experiments validate that the proposed In-
evitable state checker (ICSe-Test), utilizing extremal
trajectories, outperforms the state-of-the-art schemes
for preventing collisions in real-time in dynamic situ-
ations, where the obstacles change their future trajec-
tories at will, and quick replanning is required.

8 Conclusion
This paper has presented a Collision Avoidance scheme
based on the proposed Inevitable Collision State-
Checker (ICSe-test) using Extremal Trajectories. The
concept of Velocity is extended to compute ICS. It is
shown that the four extremal trajectories can be used
to check the state for ICS. Due to the fixed number
of maneuvers, the computation required for this check

was low. The comparative studies validate that the
proposed collision avoidance approach for dynamic
environments has a high success rate when compared
to the state of the art.

References
[1] E. Prassler, J. Scholz, and P. Fiorini, “A robotics wheelchair

for crowded public environment,” IEEE Robotics & Au-
tomation Magazine, vol. 8, no. 1, pp. 38–45, 2001.

[2] R. C. Simpson, “Smart wheelchairs: A literature review,” J.
Rehabil. Res. Dev., vol. 42, no. 4, 2005.

[3] J. Lee et al., “ODS-Bot: Mobile robot navigation for
outdoor delivery services,” IEEE Access, vol. 10, pp.
107250–107258, 2022.

[4] S. Bouraine, T. Fraichard, and H. Salhi, “Provably safe
navigation for mobile robots with limited field-of-views
in dynamic environments,” Auton. Robots, vol. 32, pp.
267–283, 2012.

[5] M. Otte and E. Frazzoli, “RRTX: Asymptotically optimal
single-query sampling-based motion planning with quick
replanning,” Int. J. Robot. Res., vol. 35, no. 7, pp. 797–822,
2016.

[6] S. Petti and T. Fraichard, “Safe motion planning in dynamic
environments,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., 2005, pp. 2210–2215.

[7] G. Droge and M. Egerstedt, “Adaptive time horizon op-
timization in model predictive control,” in Proc. Amer.
Control Conf., 2011, pp. 1843–1848.

[8] S. Kim et al., “BRVO: Predicting pedestrian trajectories
using velocity-space reasoning,” Int. J. Robot. Res., vol. 34,
no. 2, pp. 201–217, 2015.

[9] A. Bera et al., “GLMP: Realtime pedestrian path prediction
using global and local movement patterns,” in Proc. IEEE
Int. Conf. Robot. Autom. (ICRA), 2016, pp. 5528–5535.

[10] S. Zamboni et al., “Pedestrian trajectory prediction with
convolutional neural networks,” Pattern Recognit., vol. 121,
p. 108252, 2022.
[

[11] T. Fraichard and H. Asama, “Inevitable collision states—A
step towards safer robots?,” Adv. Robot., vol. 18, no. 10, pp.
1001–1024, 2004.

[12] N. Chan, J. Kuffner, and M. Zucker, “Improved motion
planning speed and safety using regions of inevitable colli-
sion,” in Proc. 17th CISM-IFToMM Symp. Robot Design,
Dyn., Control, 2008, pp. 103–114.

[13] R. Parthasarathi and T. Fraichard, “An inevitable collision
state-checker for a car-like vehicle,” in Proc. IEEE Int. Conf.
Robot. Autom., 2007, pp. 3068–3073.

[14] D. Wilkie, J. Van Den Berg, and D. Manocha, “Generalized
velocity obstacles,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., 2009, pp. 5573–5578.

[15] K. M. Zuhaib et al., “Collision avoidance from multiple
passive agents with partially predictable behavior,” Appl.
Sci., vol. 7, no. 9, p. 903, 2017.

[16] D. Wilkie, J. Van Den Berg, and D. Manocha, “Generalized
velocity obstacles,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., 2009, pp. 5573–5578.

[17] K. M. Zuhaib et al., “Collision avoidance of a kinody-
namically constrained system from passive agents,” Eng.
Technol. Appl. Sci. Res., vol. 11, no. 1, pp. 6760–6765, 2021.

[18] L. Martinez-Gomez and T. Fraichard, “An efficient and
generic 2D inevitable collision state-checker,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., 2008, pp.
234–241.

QUEST RESEARCH JOURNAL, VOL. 22, NO. 02, PP. 01–09, JUL–DEC, 2024 9

[19] L. Martinez-Gomez and T. Fraichard, “Collision avoidance
in dynamic environments: An ICS-based solution and its
comparative evaluation,” in Proc. IEEE Int. Conf. Robot.
Autom., 2009, pp. 100–105.

[20] S. Bouraine, T. Fraichard, O. Azouaoui, and H. Salhi,
“Passively safe partial motion planning for mobile robots
with limited field-of-views in unknown dynamic environ-
ments,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
2014, pp. 3576–3582.

[21] M. A. Bouguerra, T. Fraichard, and M. Fezari, “Safe
motion using viability kernels,” in Proc. IEEE Int. Conf.
Robot. Autom. (ICRA), 2015, pp. 3259–3264.

[22] R. Parthasarathi and T. Fraichard, “An inevitable collision
state-checker for a car-like vehicle,” in Proc. IEEE Int. Conf.
Robot. Autom., 2007, pp. 3068–3073.

[23] P. Fiorini and Z. Shiller, “Motion planning in dynamic
environments using velocity obstacles,” Int. J. Robot. Res.,
vol. 17, no. 7, pp. 760–772, 1998.

[24] Z. Shiller, F. Large, and S. Sekhavat, “Motion planning
in dynamic environments: Obstacles moving along arbitrary
trajectories,” in Proc. IEEE Int. Conf. Robot. Autom., 2001,
vol. 4, pp. 3716–3721.

[25] J. Van Den Berg, S. J. Guy, M. Lin, and D. Manocha, “Re-
ciprocal n-body collision avoidance,” in Robotics Research:
The 14th Int. Symp. ISRR, Berlin, Heidelberg: Springer,
2011, pp. 3–19.

[26] A. E. Bryson, Applied Optimal Control: Optimization,
Estimation and Control, Routledge, 2018.

[27] M. Seder and I. Petrovic, “Dynamic window based ap-
proach to mobile robot motion control in the presence of
moving obstacles,” in Proc. IEEE Int. Conf. Robot. Autom.,
2007, pp. 1986–1991.

