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Abstract

In this paper, the aim is to develop two Hybrid Explicit Schemes based on the Finite Difference method for a one-
dimensional Advection Diffusion Equation. Moreover, the study considered the advection-diffusion equation as an
initial boundary value problem (IBVP) for numerical solutions obtained from various second-order explicit methods
along with the solution by proposed methods. Von-Neumann stability analysis is used to analyze the stability of
the developed schemes graphically. In the numerical analysis of errors, the L 2 has been computed to compare
proposed methods with existing methods in literature and has been carried out in different conditions and step sizes.
Proposed methods are robust explicit methods for the purpose of solution of the 1-D advection-diffusion equation.
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✦

1 Introduction

T he study of partial differential equations has been
a major concern in the history of mathematics as

well as in engineering so mathematical models is used
in understanding of physical sciences. So, Advection
Diffusion Equation (ADE) is also one of them and uses
as model describing transport and diffusion problem.
Using finite difference schemes explicit and implicit
techniques such as Forward Time Center Space scheme
(FTCS), Upwind, Lax-Wendroff for numerical approx-
imation of 1 D (ADE), in same work author also
describe accuracy, and stability of these schemes [1]. In
numerical approximation of one-dimensional parabolic
(PDE) with nonlocal time weighing initial conditions
by developing a new modified explicit scheme based on
finite difference method, authors modified of Saulyev’s
first kind formula with the aim of reducing error
and finally compared the results with existing method
such as FTCS, Duke-Frankel, Crandal’s technique and
Crank Nicholson’s scheme in different conditions and
step sizes also proved new modified scheme uncondi-
tionally stable [2]. The (ADE) was used as mathemat-
ical model to express transporting and diffusion prob-
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lems, for water quality model in a canal computing
through Saulyev’s finite difference technique [3]. In this
research, authors focused on the utilization of parallel
architectures for implementing iterative methods in
the context of solving large systems of equations, in the
literature a problem widely studied solutions up to 12
cores using the Jacobi method, but authors analyzed
by employing a virtual machine with 30 cores, first
time used to find the solution of Helmholtz equation
resulting in more comprehensive findings through their
experimentation, and demonstrated effectiveness of
parallel computing methodologies and their applicabil-
ity and OpenMP implementations was on both current
supercomputing platforms and virtual machine envi-
ronments [4]. The (ADRE) was used as a model and
applied the scheme to a pollutant dispersion and for
water pollutant concentration also the graphical solu-
tions is obtained [5]. Authors used the one-dimensional
advection dispersion reaction equation (ADRE) as
dispersion model using backward time central space
scheme that gives to pollution concentration fields for
elevation of the water flow [6]. Scholars take governing
equation (ADRE) equation as model for uniform flow
of canal water quality by using two modified explicit
schemes (FTCS) and Saulyev’s technique to compute
pollutant concentration fields after evaluating veloc-
ity, also compared both schemes stability and accu-
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racy [7]. Authors investigated the convergence rate
of proposed hybrid numerical iterative technique for
solving nonlinear problems of one variable (f(x) = 0),
hence various algebraic and transcendental nonlinear
problems of one variable were solved which exhibited
a convergence rate of two, indicating its efficiency
in finding approximate real roots in [8] show casing
its effectiveness in achieving accurate solutions. For
obtaining solution, the MATLAB tool was used with
implementing the iterative techniques. In [9], authors
took a model based one-dimensional linear wave equa-
tion investigated and compared performance of these
techniques using lax -Wendroff method and finite dif-
ference method is applied in discretization and many
more which were more stable than single step methods
also other techniques which are time consuming in
numerical in accuracy. Authors discuss the numeri-
cal solution of Advection diffusion in one dimension
for high Peclet numbers using five classical methods
Forward Time Center Space, Backward Time Center
Space, Crank Nicholson, MacCormak and Saulyev’s.
Also revised the latter two methods for study the pulse
and step inputs of mass to a steady flow in a channel
along with stability and accuracy [10]. Authors took
(ADE) as model with two case studies and variable
coefficients and two different sets of (BC) were consid-
ered at the inlet and outlet of the domain. For analytic
solution Laplace transform is used, both analytical
as well as numerical results were in good agreement
with each other [11]. The focus of author is to study
the stability and consistency analysis for (ADE) us-
ing the Central Difference Scheme (CDS) used Tay-
lor’s series expansion for (CDS) and found scheme
is consistent also for stability Von-Neumann Method
used for scheme and found to be conditionally stable
[12]. For estimation of water pollution, the authors
take one-dimensional (ADE) as an initial-boundary
(IBVP) problems by finite difference methods also
comparison with an exact solution, also represented
solution graphically. Also, relative error is estimated
[13]. In this paper author proposed one dimensional
unsteady linear (ADE) was solved by both analyti-
cal and numerical methods in which Euler methods
and Crank Nicholson method were used as numerical
solutions while separation of variables method issued
as analytical solution applied with homogenous (BC)
and an (IC) in the form of a cosine function its
stability depends on the viscosity term, exact solution
simplified form which is confirmed by all numeri-
cal techniques [14]. For solving nonlinear convection-
diffusion-reaction problems authors proposed hybrid
iterative technique, referred to as the Variational It-
eration Method, and proved as fast convergence in

obtaining accurate solutions also comparative analysis
was conducted against existing schemes, namely the
variational iteration method, Through the comparison
of error profiles, and examined accuracy and reliability
of the proposed method, introduced a hybrid iterative
technique, fusing the variational iteration method with
the Chebyshev wavelet, The comparative analysis with
existing methods further validates the proposed ap-
proach by showcasing its performance through error
profiles [15]. For estimation of pollutant transport in a
straight narrow channel, take (ADE) as mathematical
model by using explicit upwind scheme also compare
results numerically existing analytical solution finally
results show good agreement [16]. Authors used (ADE)
for numerical diffusion and oscillatory behavior char-
acteristics are averted by two numerical methods semi-
discretization and Euler’s method were used for a
system of (ODEs), finally compare the solutions and
errors for both schemes [17]. In this paper authors
presented numerical simulation as well as analytical
solution of one-dimensional(ADE) by using explicit
(CDS) and Crank-Nicolson scheme also developed a
computer programming code for Crank-Nicolson tech-
nique and present the stability analysis for (ADE)
for prescribed initial and boundary data, also error
estimated, and the rate of convergence is graphically
presented. Finally, using numerical schemes, pollutant
in a river was estimated by authors with different times
and points [18]. Authors took (ADE) with constant
coefficients, for analytical solution Laplace transform
was used and for numerical solution explicit finite
difference schemes was used, to describe numerically
and graphically the variation in pollutant concentra-
tion and dispersion (IC) and (BC) at the source of
pollution (x = 0) were applied [19]. In medical field,
for artificial blood oxygenation to aspect of cardiopul-
monary bypass surgery, author take simple model and
associated analytic solutions in order to maintaining
physiological levels of oxygen and many more uses also
new approach to enhancing the diffusion of oxygen into
the blood artificially so for showing that using trans-
verse flow [20]. Authors proposed A Numerical Hybrid
Iterative Technique (NHIT) for estimating the real
roots of nonlinear Eqs. In one v ariable (NLEOV) to
accelerate the convergence of NLEOV solutions. Pro-
posed method involved combining different methods to
enhance performance and constructed by integrating
the Taylor Series method with (N R) method in deriva-
tion. For computational analysis Excel and MATLAB
tools were used of variety of NLEOV problems, and the
results demonstrate superior convergence compared
to the bracketing iterative method (BIM) also finally
compared the results with existing schemes proved
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with improved convergence and accuracy [21]. The
same authors take one dimensional (ADE) for describ-
ing the transport and diffusion problems for pollutants
and suspended matter in a river by using Saulyev’s
scheme calculated at three-time steps θ = 0,0.5,1 in
which if θ = 0 have glossy solution [22]. Authors used
one-dimensional equations of conservation law form
by using Saulyev’s finite difference and computed the
solution and compared it with the existing methods
[23].

2 Mathematical Model
The model of advection diffusion equation in one
dimensional form is as described by equations (1) to
(4).

δu

δt
+ β

δu

δx
= α

δ2u

δx2 where 0 < x < 1, 0 < t ≤ T (1)

With initial coditions

u(x, 0) = f(x), 0 ≤ x ≤ 1, (2)

And boundary conditions,

u(0, t) = b0(t), 0 < t ≤ T, (3)

u(1, t) = b1(t), 0 < t ≤ T, (4)

Where f , b0 and b1 are defined functions, while the
function u is unknown solution of governing equation
and α, β > 0 are chosen so that the process of diffusion
and advection can be computed, respectively.

3 Existing Schemes
Various two levels of explicit and implicit schemes
are present to solve the model problem (1-4). The
FTCS, Upwind, Lax Wendroff [1] Saulyev’s Type-I
in [10] and Saulyev’s Type-II in [3] are among ex-
plicit schemes, also (BTCS), upwind implicit formula,
Crank–Nicolson, modified Siemieniuch–Gladwell pro-
cedure are implicit schemes as in [1]. We present some
existing explicit and proposed Hybrid schemes in this
section.

3.1 Forward Time and Center Space Type
The three schemes with forward difference quotient
for time derivative approximation and first spatial
derivative term with a weight ϕ and second order
derivative term central difference approximation are
[1] given as.

δu

δt
= ui

n+1 − ui
n

∆t
(5)

δu

δx
= ϕ

(ui
n − un

i−1)
∆x

+ (1 − ϕ)(un
i+1 − un

i−1)
2∆x

(6)

δ2u

δx2 = un
i+1 − 2ui

n + un
i−1

(∆x)2 (7)

Substituting ϕ = 0, yields the following Forward time
center space schemes,

ui
n+1 = 1

2(2s+c)un
i−1+(1−2s)ui+

1
2(2s−c)un

i+1 (8)

where c = β ∆t
∆x , s = α ∆t

(∆x)2 as in [1].

3.2 Upwind Type

From the approximation, the equations (5)-(7) with
ϕ = 1, yield the Lax-Wendroff explicit formula for
approximation of unknown is

un+1
i = (s + c)un

i−1 + (1 − 2s − c)un
i + sun

i+1 (9)

3.3 Lax-Wendroff

From the approximation, the equations (5)-(7) with
ϕ = c, yield the upwind explicit formula for approxi-
mation of unknown is

un+1
i = 1

2(2s+c+c2)un
i−1+(1−2s−c2)un

i +1
2(2s−c+c2)un

i+1
(10)

3.4 Saulyev’s Type-I

Using Saulyev’s Type-I. The scheme uses forward dif-
ference quotient for time derivative as described in (5).
The first order space derivative and second order space
derivative terms are approximated as in [10] The first
order space derivative term is approximated as

δu

δx
=

(un
i+1 − un+1

i−1 )
2∆x

(11)

δ2u

δx2 =
un+1

i−1 − un+1
i − un

i + un
i+1

(∆x)2 (12)

The computation formula for this scheme is described
as,

un+1
i = ( 1

1 + s
)[(s + c

2)un+1
i−1 + (1 − s)un

i + (s − c

2)un
i+1]
(13)
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3.5 Saulyev’s Type-II
On ADE using Saulyev’s, in this work approximation
of time derivative term is same as (5), but space
derivatives are approximated as in [3],

δu

δx
= 1

2
(un

i+1 − un
i )

∆x
+ 1

2
(un+1

i − un+1
i−1 )

∆x
(14)

δ2u

δx2 = θ

(∆x)2 (un+1
i−1 − un+1

i − un
i + un

i+1)+

(1 − θ)
(∆x)2 + (un

i+1 − 2un
i + un

i−1) (15)

The computation formula for this scheme is,

un+1
i = 1

(1 + c
2 + sθ) [( c

2 + sθ)un+1
i−1 + (s − c

2)un
i+1+

(1 + c

2 + sθ − 2s)un
i + s(1 − θ)un

i−1] (16)

4 Proposed Hybrid Explicit Schemes
4.1 Hybrid Scheme 1
In this Proposed Hybrid Scheme (HS1), we use forward
difference quotient for time derivative approximation
as in (5) and first order spatial derivative term and
second order derivative term are given as.

δu

δx
= ϕ

(un−1
i − un−1

i−1 )
∆x

+ (1 − ϕ)(un
i+1 − un

i−1)
2∆x

(17)

δ2u

δx2 = θ

(∆x2)
(un+1

i−1 un+1
i − un

i + un
i+1)+

(1 − θ)
(∆x2)

(un
i+1 − 2ui

n + un
i−1) (18)

Now, taking for ϕ = c & θ = c then substituting (5),
(17) and (18) in (1) yields the following,

un+1
i = ( 1

1 + sc
)[(scun+1

i−1 +(s(1−c)+ c

2(1−c))un
i−1+

(1−sc−2s(1− c))un
i +(sc+s(1− c)− c

2(1− c))un
i+1−

c2(un−1
i − un−1

i−1 ))] (19)

4.2 Hybrid Scheme 2
In this Proposed Hybrid Scheme (HS2), we use forward
difference quotient for time derivative approximation
as in (5) and first order spatial derivative term ϕ = c
in (6) and second order derivative term by θ = s2 in
(15) are given as.

δu

δx
= c

(un
i − un

i−1)
∆x

+ (1 − c)(un
i+1 − un

i−1)
2∆x

(20)

δ2u

δx2 = s2

(∆x2)
(un+1

i−1 − un+1
i − un

i + un
i+1)+

(1 − s2)
(∆x2)

(un
i+1 − 2un

i + un
i−1) (21)

Now, substituting (5), (20) and (21) in (1) yields
the following,

un+1
i = 1

1 + s3 [(c2

2 − c

2 +s)un
i+1+(1−c2−2s+s3)un

i +

(c2

2 + c

2 + s − s3)un
i−1 + s3un+1

i−1 ] (22)

5 Numerical Problem
The Following numerical problem equations (23-26)
have been taken from [1] and set with the model
equations (1-4) for estimating the performance of the
proposed schemes. The results of the proposed schemes
are compared with the conventional schemes, as shown
in the comparison table 1.

f(x) = exp(−(x + 0.5)2

0.00125 ) (23)

g0(0, t) = 0.025√
0.000625 + 0.02t

exp(−( (0.5 − t)2

0.00125 + 0.04t
))

(24)

g1(1, t) = 0.025√
0.000625 + 0.02t

exp(−( (1.5 − t)2

0.00125 + 0.04t
))

(25)
With α = 0.01 and β = 0.1 The exact solution is

g(x, t) = 0.025√
0.000625 + 0.02t

exp(−( (x + 0.5 − t)2

0.00125 + 0.04t
))

(26)
Note that: L2 error norm is defined as

L2 = ||ũ − u||2 =

√√√√ 1
m

m∑
i=1

|ũl − ui|2 (27)

In (27), ũl is exact solution and ui is approximate
solution.

6 Results and Discussions
For the purpose of testing the L2 Norm of the error
has been computed through MATLAB tool at T = 1
with various Renold numbers (R) 1, 2, 4, 8, and 1.25,
2.5, and 5 respectively, along with values of different
parameters c and s were set with step sizes to produce
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TABLE 1: Performance Evaluation of the Performance Evaluation of the Proposed schemes with conventional
methods at T=1

R c s M N FTCS Upwind Lax
Wen-
roff

Saul-
yev’s

Type-1

Saul-
yev’s

Type-2
=0

(ST2-1)

Saul-
yev’s

Type-2
=0.5

(ST2-2)

Saul-
yev’s

Type-2
=1

(ST2-3)

Prop-
osed

Hybrid
(HS1)

Prop-
osed

Hybrid
(HS2)

2 0.05 0.025 50 1000 9.8124
e-03

9.4735
e-02

7.9606
e-03

3.6132
e-02

9.4046
e-03

1.0838
e-02

1.2923
e-02

7.8735
e-03

7.9619
e-03

2 0.1 0.05 50 500 1.4151
e-02

9.0675
e-02

6.4818
e-03

7.8137
e-02

9.4398
e-03

1.2949
e-02

1.8015
e-02

6.2554
e-03

6.4922
e-03

2 0.2 0.1 50 250 2.7158
e-02

8.2298
e-02

3.3824
e-03

1.6538
e-01

9.5810
e-03

1.8088
e-02

2.9110
e-02

5.5870
e-03

3.4812
e-03

2 0.4 0.2 50 125 5.9187
e-02

6.4550
e-02

3.4072
e-03

3.4525
e-01

1.0147
e-02

2.9287
e-02

5.0606
e-02

2.3213
e-02

3.4152
e-03

4 0.01
25

0.00
3125

25 2000 2.5417
e-02

1.1329
e-01

2.5314
e-02

2.2279
e-02

2.6042
e-02

2.6225
e-02

2.6417
e-02

2.5301
e-02

2.5314
e-02

1 0.01
25

0.01
25

25 500 2.5441
e-02

1.1042
e-01

2.3778
e-02

2.3905
e-02

2.6754
e-02

2.7528
e-02

2.8440
e-02

2.3580
e-02

2.3778
e-02

4 0.1 0.025 25 250 2.8505
e-02

1.0647
e-01

2.1632
e-02

4.5945
e-02

2.7752
e-02

2.9393
e-02

3.1494
e-02

2.0994
e-02

2.1634
e-02

4 0.2 0.05 25 125 4.3099
e-02

9.8129
e-02

1.6992
e-02

1.0276
e-01

2.9909
e-02

3.3434
e-02

3.8263
e-02

1.7677
e-02

1.7009
e-02

1.25 0.8 0.64 80 100 1.1817
e-01

2.3865
e+26

(Unst-
able)

6.1270
e+21

(Unstable)

7.9059
e-01

2.7958
e-03

6.0336
e-02

1.0819
e-01

3.1393
e-02

4.7915
e-02

2.5 0.4 0.16 40 100 6.7932
e-02

6.9537
e-02

1.6090
e-03

3.0428
e-01

1.5658
e-02

3.0312
e-02

4.8274
e-02

3.1098
e-02

1.7711
e-03

5 0.2 0.04 20 100 5.1900
e-02

1.0188
e-01

2.5050
e-02

8.5124
e-02

4.1083
e-02

4.3673
e-02

4.7057
e-02

2.5019
e-02

2.5060
e-02

Fig. 1: Error Computation With Proposed Schemes And Conventional Methods
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Fig. 2: Error Computation With Proposed Schemes And Conventional Methods

the corresponding (R), where M is the number of
spatial (x) steps and N is the time steps.

It can be seen in Table. 1 with c = 0.05 and
s = 0.025 the error of HS1 is 7.8735e − 03 which
is smaller than all existing methods such as FTCS,
upwind, ST1, ST21, ST22 and ST23, however, the
error of HS2 is 7.9619e − 03 which is almost same that
of Lax Wendroff. Similar performance can be seen
with R = 2 for both New HS1 and HS2 methods.
In Table 1, it is also observed at the value of
R = 1.25, the error grows rapidly in both Upwind
and Lax Wendroff methods due to failure of stability
requirement. However, the proposed methods HS1
and HS2 work well at the same value of R. HS2 has
a smaller magnitude of error than all other methods.
The performance of both proposed methods can also
be seen in the remaining values of R in Table 1.
The flow of error at time T = 1 for all values of space
x are shown in Figure 1 with c = 0.05 and s = 0.025.
Both new methods HS1 and HS2 graphs are below
the others, confirming the smaller magnitude of errors
than existing methods.
In Figure-2, the bar charts for various methods are
shown at T=1 with c = 0.2 and s = 0.04, hence can
be seen that the last two bars are smaller than other
bars indicating HS1 and HS2 have smaller errors than
Saulyev’s HS1 and other methods.
In Figures 3 (a) and 3(b) the absolute values of
growth factors —g— have been plotted from the Von
Neumann Stability analysis of HS1. It is observed that
for different values of angle (0, π/2andπ) within the
range [0, π] the stability requirement |g| ≤ 1 is satisfied
by the method HS1. Hence, HS1 is conditionally stable

within the range 0 ≤ s ≤ 0.2, however, the value of c
may be restricted to the range 0 ≤ c ≤ 4.
In Figure 4, the absolute values of the growth factor
have been plotted from the Von Neumann stability
analysis of HS2. It is observed that for values of angle
with the range [0, π] the stability requirement |g| ≤ 1
is satisfied by method HS2. Hence, HS2 is conditional
stable within 0 ≤ s ≤ 0.6, however the value of c may
be restricted to the range 0 ≤ c ≤ 0.42.

7 Conclusion

The comparison of both proposed schemes has been
carried out with other existing schemes in the lit-
erature. This shows satisfaction with the proposed
schemes and produced smaller errors than the conven-
tional methods. It is also observed that the schemes
such as FTCS, Upwind, and Lax-Wendroff due to the
stability requirement cannot be used where Saulyev’s
Type-II ST2-1, ST2-2, ST2-3 work well. However, the
proposed schemes have better stability requirements
such as HS2 is stable for all values of s with only
restriction of c with the range [0, 0.42]. While HS1
has smaller errors in computation than other second-
order conventional methods such as Lax-Wendroff and
Saulyev’s schemes. Both proposed methods are seen
as robust in comparison to methods. Hence proposed
schemes are explicit in nature and can be programmed-
friendly. Hence schemes can be entertained in real-
world problems for numerical solutions of 1-D advec-
tion diffusion Equations.
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(a)

(b)

Fig. 3: (a) Von Neumann Stability Analysis of HS1, and (b) Von Neumann Stability Analysis of HS1
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