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Abstract

Microsleep is a brief, complete, and unintentional sleep-related loss of consciousness. The duration of microsleeps and
the probability of accidents are highly correlated. In extended monotonous activities, the consequences of microsleeps
are therefore often catastrophic. Electroencephalogram (EEG) signals have widely been used for the early detection
of microsleeps. This paper comprehensively reviews several EEG-based microsleep detection/prediction techniques
published in academic conferences and journal articles published between January 2005 and January 2023. The review
specifically discusses the preprocessing, feature extraction, and feature selection techniques collectively known as
feature engineering, machine learning algorithms, and overall performance metrics. The review finally presents future
directions that could help improve the overall EEG-based microsleep prediction systems.
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1 Introduction

M icrosleeps are brief, complete, and involuntary
sleep-related loss of consciousness, and can

last for 15 s [1], [2]. Generally, behavioral signs like
eye closure, droopy eyes, head nodding, and total
loss of visuomotor responsiveness are indicators of
microsleeps [3]. Such behavioral signs are, however,
phasic and quite distinctive from the more tonic
states of drowsiness (tendency to fall asleep), and
mental fatigue (disinclination to responsiveness) [4].
A phasic state refers to a transient performance
measured on a shorter time scale (in seconds or a
fraction of a second). Whereas, tonic states refer to
average performance over longer time scales (minutes)
[5]. Microsleeps are generally harmless and part of
everyday life. Many individuals, who momentarily fall
asleep, can’t recognize that they have microsleeps.
Active and attention-demanding tasks, like driving,
on the other hand, are everyday norms and are done
easily. The propensity to microsleep, interestingly,
increases with a decrease in the complexity of the
task [6], which suggests that microsleeps are more
likely to occur in routinely performed active tasks like
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driving, trucking, aviation, navigation, maritime, and
process control. Loss of sleep-related consciousness
during an extended-attention monotonous task can
lead to an erroneous (impaired), delayed (increased
reaction time), or completely failed (absent) response,
the consequences of which are often catastrophic.
Like sleep-deprived, healthy and non-sleep-deprived
individuals are equally vulnerable to microsleeps [4],
[7]. A high correlation exists between the duration
of microsleeps and the probability of accidents [8].
Therefore, there arise major safety concerns, especially
for high-risk occupations that demand extended
and unimpaired visuomotor performance such as
driving, aviation, and process control. Imminent
microsleep predicted accurately and non-invasively
can potentially prevent catastrophic accidents and
save lives.
Electroencephalogram (EEG) is a brain imaging
technique, used to non-invasively record electrical
activity from different spatial locations on the
scalp of the human brain. To record brain activity,
EEG electrodes are generally placed on the scalp
per the internationally recognized 10–20 or 10–10
systems. Besides high temporal (i.e., events occurring
at milliseconds time scale) and adequate spatial
resolutions, EEG recordings are relatively inexpensive
and convenient in real-time applications. However,
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due to their low signal-to-noise ratio (SNR), non-
stationarity, and intra- and inter-subject variability
[9], the usefulness of EEG signals is limited. A low
SNR signal is affected more by task-irrelevant sources
than task-relevant ones. A non-stationary signal has
a time-varying mean and variance. Consequently, a
classifier trained on limited data may not generalize
well on the data recorded at different times. The
inter-subject variability arises due to physiological
differences among individuals and subject-specific
cognitive styles. In such a situation, the classifier
across the subjects may poorly perform.
EEG-based classification generally follows two
paradigms: event-related potentials (ERP), and
continuous response. In the ERP paradigm, the
individual responds to known and time-locked
external visual, auditory, or other stimuli, e.g.,
brain-computer interface (BCI) [10]. In the continuous
response paradigm, the demarcation of EEG relating
to an event/episode (e.g., sleep) involves subjectivity,
where the onset and offset of an event may not be
precisely defined [5]. Consequently, the length, and
numbers of the events of interest, like microsleeps
and alert/responsive, vary across the subjects and
sessions. On the other hand, labels used in the
classification need to be discrete. Such discretized
events are referred to as states [11], as shown in Fig.
1. The corresponding gold standard (labels) comprises
all responsive and microsleep states. The detection
and prediction of microsleeps (states or events) from
the corresponding EEG epoch (W) refers to τ = 0,
and τ > 0, respectively.
EEG can measure the changes in brain activity
associated with various states of arousal, and
subsequently, has widely been used in the detection
of vigilance [12], alertness, mental fatigue [13],
drowsiness [14], sleep [15], and microsleep [1], [16].

The bibliographical databases contain several
published conference and journal articles on
EEG-based microsleep detection/prediction but
showed no review article. This study, therefore,
presents a comprehensive review of EEG-based
microsleep detection/prediction techniques published
in conferences and journal articles from January 2005
to January 2023. The review specifically discusses
the preprocessing and feature engineering techniques,
machine learning algorithms, and overall performance
metrics. In addition, the review presents challenges
in EEG-based microsleep detection and future
directions, which could help improve the overall
EEG-based microsleep prediction systems.

2 RESEARCH METHODOLOGY

This review article includes English peer-reviewed
journals and conference papers published between
January 2005 and January 2023, which at least
have used one machine learning approach to de-
tect microsleeps from EEG signals. Multiple key-
words were formulated to retrieve the relevant liter-
ature from high-quality and reliable databases, like
Web of Science, IEEE Xplore, PubMed, and Sco-
pus. The following group-wise search terms were used
to query the databases, and are shown in Table 1.
Group 1 consisted of machine learning-related key-
words, i.e., Predict*, detect*, class*, deep learning,
machine learning, ensemble learning, artificial neu-
ral network, ANN, and neural network. Group 2
consisted of signal-related keywords, i.e., EEG, elec-
troencephalogram, electroencephalogram, electroen-
cephalography, electroencephalographic, and electro-
encephalograph*. Group 3 consisted of main theme
keywords, i.e., Microsleep*, micro-sleep, microsleep,
and lapse.
The logical OR and logical AND operations were
respectively performed to pair the keywords within
and among the groups and to form a search query.
The query was then applied to the article title, ab-
stract, and keywords to find the relevant peer-reviewed
journal and conference paper. MENDELEY (a citation
manager software) was used to store the search records
against each search query.

Duplicate studies and all those that: (1) ana-
lyzed/characterized EEG features under microsleeps
and responsive events, and (2) were non-peer-reviewed
papers, books, book chapters, theses, surveys, blogs,
or webpages, were excluded.

3 MICROSLEEP DETECTION/PREDIC-
TION

The overall microsleep detection/prediction pipelines
or systems include several steps, shown in Fig. 2,
followed by its details.

3.1 Data Sets

The literature related to EEG-based microsleep detec-
tion indicates that customized datasets, which pub-
licly were not available at the time of writing this
manuscript, have been used. Three datasets with vary-
ing characteristics (e.g., sampling rate, number of elec-
trodes, task) have been used, and their description is
given in Table 2.
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TABLE 1: Selected keywords in different groups

Group – I (machine
learning-related

keywords)

Predict*, detect*, class*, deep learning, machine learning, ensemble
learning, artificial neural network, ANN, neural network

Group – II (signal-related
keywords)

EEG, electroencephalogram, electro-encephalogram,
electroencephalography, electroencephalographic, electroencephalograph*

Group – III (main theme
keywords) Microsleep*, micro-sleep, microsleep, and lapse

Group – IV (publication
year) January 2005 – January 2023

Group – V (document
type) Peer-reviewed journals, conference articles

Final search query (Group – I) AND (Group – II) AND (Group – III) AND (Group – IV)
AND (Group – V)

TABLE 2: Mostly used datasets and their characteristics

Description Gold standard Used by

Dataset A: 8 subjects performed 1D
pseudo-random target tracking for
two 1-h sessions, one week apart.
16-channel EEG signals were acquired
at 256 Hz.

The gold standard was comprised of responsive,
microsleep, and uncertain classes. Coherent tracking
was labeled as responsive. The microsleep was the
video rating of deep drowsy or lapse AND
(erroneous tracking OR unresponsive). Epochs
that did not fall contextually into either
microsleep or responsive were marked Uncertain and
were discarded. The prediction frequency and time ()
were respectively 4 Hz and 0.25 s [17].

[1], [17]–[22]

Comprised microsleep and responsive states with a
detection frequency of 1 Hz.

[16], [22]–[26]

The gold standard comprised lapse and responsive
events. The event of lapse was a logical OR video rating
of deep drowsy and flat-spot in the tracking performance.
Detection of lapse events. The detection frequency
was 1 Hz [7].

[3], [7], [27]

Dataset B: The maintenance of
wakefulness test (MWT) for 40 minutes
was performed on 76 excessive daytime
sleepiness (EDS) patients. The EEG
signals were acquired at 200 Hz from
seven sites, and band-pass filtered at
0.3 – 70 Hz. However, only one EEG
signal from the occipital region
referenced to opposite mastoid
electrodes, and two electrooculogram
(EOG) signals from E1 and E2
(referenced to the M1 electrode)
were used.

Comprised episodes of wakeful, microsleep, drowsy,
and microsleep candidate with a detection frequency
of 200 Hz (i.e., continuous/sample-wise detection).
Microsleeps were scored based on EEG (O1-M2 and
O2-M1 derivations), EOG, and videography. The
frequency of detection was 200 Hz [2].

[2], [28]

Dataset C: 16 subjects performed
eight 40-min simulated driving sessions.
7 channel EEG signals
were acquired at a sampling frequency
of 256 Hz.

The gold standard was comprised of 1484 microsleep
events and 1940 events of sustained attention (SA).
An event of 0.3 – 6 s, based
on behavioral clues of eye closure and nodding-off,
driving performances like lane deviation, and EOG,
was considered as
microsleep. Events in which the car remained in
the lane were
labeled as SA [29].

[29]
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Fig. 1: Each red dot represents a state sampled at 4 Hz. and indicates a microsleep event of 1 s duration. τ and
W respectively indicate the prediction time and the window size of the EEG signal used to detect/predict an
event (episode) or a state.

Fig. 2: Block diagram of overall EEG-based microsleep detection/prediction system. Feature extraction together
with feature selection/dimensionality reduction/regularization is referred to as feature engineering [34]

3.2 EEG Data Acquisition

EEG signals have been acquired using different mon-
tages (combinations of electrodes) and per the inter-
national 10–20, and 10–10 systems. Poudel et al. [4],
Golz et al. [29], and Golz et al [30] used 60, 9, and
7 electrodes respectively, whereas, Skorucak et al. [2],
Malafeev et al. [28], and Peiris et al. [7] used 7, 6,
and 16-channels respectively. Importantly, however,
a higher number of EEG electrodes provides higher
spatial resolution but at a cost of higher computations

and the subject’s comfort [31]. Similarly, EEG signals
have been recorded at different sampling frequencies,
like 128 Hz [30], 200 Hz [2], and 256 Hz [7], [28], [29].

3.3 EEG Preprocessing Techniques
The raw EEG signals go through a preprocessing
pipeline, which typically, includes bandpass filters to
remove DC, power line interference, and noise [17],
[24], [28]. In addition, EEG signals are referenced using
different referencing techniques like common average
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reference (CAR) [32], and electrode standardization
technique (REST) [33] to improve their overall SNR.
CAR being insensitive to noise and the number of EEG
electrodes has been the most used EEG referencing
technique. Furthermore, CAR does not require prior
head model information. Different artifact removal
techniques like canonical correlation analysis blind
source separation, subspace reconstruction (ASR), and
independent component analysis (ICA) are then used
to remove eye blinks (ocular), muscle, and electro-
cardiogram (EKG) artifacts from the EEG signals
[2], [17], [24]. However, sometimes artifactual EEG
signals/epochs are discarded [23], [24]. The clean EEG
signals are also decomposed into delta (0.5–4 Hz),
theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and
gamma (¿30 Hz) sub-bands [1], [3]. Long EEG signals
are finally segmented/epoched to reduce the sample
size and achieve discrete labels.

3.4 Feature EEG Extraction Techniques
Feature extraction maps an input space (signals) to
another reduced space and can involve signal or sta-
tistical processing algorithms. Features, compared to
original signals, simultaneously compress the data and
retain the relevant information. Subsequently, features
improve the generalized performance of overall ma-
chine learning pipelines and reduce computational and
storage requirements. Good features have minimum
intra- and maximum inter-class variability [34].
Power spectral features have generally been extracted
using parametric and nonparametric approaches meth-
ods. These features, though extracted differently, have
widely been used in EEG-based microsleep detec-
tion/prediction.
Davidsons et al. [3], [23] calculated power spectral
densities from one-second non-overlapping EEG seg-
ments using a 40th-order covariance method-based au-
toregressive (AR) model. The spectral densities (fea-
tures) were converted into z-scores concerning the first
minute of EEG data, and then finally log-transformed,
termed Log-power spectral features. Peiris et al. [24],
[27] calculated Log-power spectral features from two
seconds and 50% overlapping EEG segments using a
40th order Burg method-based order AR model. These
features together with spectral power ratios and nor-
malized spectral powers have been used in successive
EEG-based microsleep detection studies [16], [25], [26].
Skorucak et al. [2], however, calculated power spectral
features from one-second and 80% overlapping EEG
segments via a 16th-order Burg method-based AR
model.
Shoorangiz et al. [17], [20] calculated Log-power spec-
tral features from a five-second sliding window with

a step size of 0.25 seconds via Welch’s method (also
known as periodogram). Similarly, Golz et al. [29]
calculated power spectral features via a Hanning win-
dowed periodogram.
Nonlinear features, like fractal dimension, approxi-
mate entropy, and Lempel-Ziv complexity have also
been used with spectral features for EEG-based mi-
crosleep detection [27]. Similarly, auto and cross Choi-
Williams distributions have been used with spectral
features [29].
Normalized and non-normalized spectral, temporal,
and information-theoretic interchannel (also known
as functional connectivity) features of coherence and
cross-spectral power, correlation and covariance, and
mutual information and joint entropy, computed non-
parametrically, have also been used to predict mi-
crosleep states [1], [18], [19].
Furthermore, Spatio-temporal features extracted us-
ing regularized Spatio-temporal filtering and classifi-
cation (RSTFC) have been used to predict microsleep
states [20].

3.5 Feature Selection Techniques
The EEG signals in feature space can become high-
dimensional datasets, and consequently, challenge the
performance of the overall learning systems [25].
Therefore, feature selection or dimensionality reduc-
tion techniques become an integral part of the overall
learning system. Feature selection techniques do not
change the original features’ representation and main-
tain their semantics. Whereas dimensionality reduc-
tion techniques project the original input data into
a lower-dimensional feature space and don’t require
learning/training.
Principal component analysis (PCA) has been the
most used dimensionality reduction technique in EEG-
based microsleep detection/prediction [3], [16], [24],
[26], [27]. Compared to nonlinear dimensionality re-
duction techniques of kernel PCA, classical multidi-
mensional scaling, isometric mapping, nearest neigh-
bor estimation, stochastic neighborhood embedding,
autoencoder, stochastic proximity embedding, and
Laplacian eigenmaps, PCA has also been reported as
the best dimensionality reduction technique at detect-
ing microsleeps from EEG signals [25]. Furthermore,
Bayesian multi-subject factor analysis has also been
used as a dimensionality reduction technique [21].
Features selection in EEG-based microsleep prediction
has been performed through sequential forward selec-
tion [1], [18], [19], and greedy forward selection [17]
methods. Golz et al. [29] used regularization parameter
C to reduce the complexity, and subsequently, avoid
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the overfitting of the learning model.
The dimensionality of feature space is generally related
to the number of EEG electrodes/channels. Subse-
quently, low-dimensional datasets, to avoid the under-
fitting of the machine model, do not require feature se-
lection. Studies [2], and [23] have used all the available
features and have not performed the feature selection
step. Deep learning inherently extracts features and
reduces dimensionality (known as feature engineering)
[9], [35]. Therefore, studies [22], and [28] have not
performed any feature engineering.

3.6 Machine Learning Models/Classifiers
Machine learning is about understanding and learning
from observational data, where the predictive features
are independent of the learning model. Broadly, multi-
ple conventional machine learning, ensemble learning,
and deep learning models have been used in EEG-
based microsleep prediction systems.
From conventional machine learning models, linear
discriminant analysis (LDA) has been the most used
classifier, both in single and ensemble configurations,
in EEG-based microsleep detection [1], [7], [17]–[20],
[27]. Linear and nonlinear support vector machine
(SVM) classifiers have also been used in some EEG-
based microsleep detection studies [1], [2], [16], [29].
Furthermore, random forest (RF) – an ensemble of de-
cision trees (DT) –[2], sparse Bayesian learning (SBL),
and variational Bayesian logistic regression (VBLR)
[20] have been used in detecting microsleeps from EEG
signals.
Different authors have exploited convolutional neural
networks (CNN), and different versions of recurrent
neural networks (RNN) like long-short term memory
(LSTM), echo state network (ESN), and liquid state
machine (LSM), in single and ensemble configurations
[2], [16], [22], [23], [26], [28]. In addition, optimized
learning vector quantization (OLVQ) has been used in
an EEG-based microsleep study [29].

3.7 Performance Metrics
Except for [2], and [28], all the reviewed articles
have considered microsleep detection as a binary
classification problem, where various performance
metrics have been formulated from elements of
a confusion matrix. For class-balanced datasets,
accuracy alone is sufficient to describe the overall
system performance. However, for class-imbalanced
datasets, in addition to sensitivity, specificity, and
precision, F-measure, geometric mean (GM), and
Mathew’s correlation coefficient have been the most
used performance metrics [36].

In addition, two curve-based and threshold-
independent metrics of the area under the curve
of the receiver operating characteristic (AUC-ROC)
and the area under the curve of precision-recall
(AUC-PR) have also been used in class-balanced and
class-imbalanced binary learning problems [37], [38].

4 CURRENT CHALLENGES
The detection performances on the continuous track-
ing task, reported in all the reviewed articles, are
low for real-life microsleep detection applications. A
variety of challenges ranging from data acquisition to
performance metrics equally contribute to such low
performances. The EEG-based microsleep detection
systems generally have two parts: signal processing
and machine learning.
EEG signals have low SNR and are largely affected by
intrinsic and extrinsic artifacts. Physiological artifacts
due to their complex nature and inference (overlapped)
with the neural systems, are highly complicated to
remove and misleadingly affect practical applications
[39], [40]. Besides being non-stationary, EEG signals,
due to physiological differences among individuals and
subject-specific cognitive styles, vary within and across
the subjects performing the same task. Such varia-
tions can result in covariate shifts. In addition, during
microsleeps, the power spectra of EEG inconsistently
change [3]. Therefore, EEG signals inherently impede
the performance of the overall microsleep detection
system.
The microsleeps are identified and measured from the
performances (in terms of error or reaction time) on
the task, and generally verified through video record-
ings. The performance on a continuous task decreases
gradually, which results in a small transitional period
between responsiveness and microsleep. Consequently,
the demarcation of microsleeps becomes subjective
and an expert can’t faithfully discriminate between the
two events of microsleep and responsiveness, referred
to as label noise [17]. Furthermore, the corresponding
EEG signals overlap each other and have been shown
to deteriorate the overall detection performance [28].
Mental fatigue can be induced by prolonged engage-
ment with cognitive tasks [13]. Both drowsiness and
fatigue can respectively be relieved by sleep and
rest [41]. The mental fatigue and drowsiness being
tonic have been classified using the first and last
few minutes of the experiment. Contrary, microsleeps
can equally affect both sleep-deprived and non-sleep-
deprived healthy individuals [4], [7], occur intermit-
tently, and not be induced. Microsleeps being pha-
sic need to be classified against every alert state.
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Microsleep datasets are therefore generally large and
highly class-imbalanced. Machine learning assumes
independent and identically distributed (iid) data,
whereas the EEG samples (like time series data) are
interdependent and causal. The current value (effect)
of a causal signal depends on current and past sam-
ples (cause) but not the future samples. Machine
learning models are good at associations in the data
but unskilled at causation. Machine learning models
always consider information that animals use heavily
like domain shift and temporal structures as noise.
For example, head nodding and eye blinks (in the
video) are considered the indication of microsleep.
Such indications in the EEG used to predict the
microsleeps are, however, considered noise/artifacts,
and are subsequently removed. Furthermore, machine
learning models can’t generalize out-of-distribution
samples (i.e., artifacts) [42], [43].

5 DISCUSSION

The development of an accurate, robust, and easy-
to-use microsleep detection system can prevent
catastrophic accidents and save lives. High temporal
resolution (at millisecond scale), making the EEG the
most used imaging technique to detect microsleeps.
However, the reviewed articles mostly used unique
steps in each part of the EEG-based microsleep
detection system (shown in Fig. 2). In addition, all
the reviewed articles used their customized datasets,
which at the time of writing this manuscript, were
not publically available. Therefore, benchmarking
a particular EEG-based microsleep detection study
becomes hard.

Wide use of band-wise spectral features (though
extracted differently) shows their effectiveness at clas-
sifying microsleep and responsiveness. Though most
used, PCA being unsupervised can perform infe-
rior to supervised feature selection techniques when
the direction of maximum variance is different from
classification-related information. Having a simple and
stable decision boundary, LDA is more robust and less
susceptible to overfitting than nonlinear classifiers [1]
and has therefore been the most used classifier.
Microsleeps being rarely occurring events, on contin-
uous tasks, result in highly class-imbalanced datasets.
For such datasets, threshold-dependent metrics of F-
measure, GM, Mathew’s correlation coefficient, and
threshold-free metrics of AUC-ROC and AUC-PR
have been used.

6 FUTURE DIRECTIONS
The development of microsleep prediction systems can
consider the following two issues. The current EEG-
based microsleep detection systems are considered bi-
nary or multiclass classification problems. Where the
transition time between the events (e.g., responsive-
ness and microsleep), and their subjective demarcation
result in label noise that lessens the overall detection
performances. To mitigate the effect of label noise and
to improve the overall detection performances, the
EEG-based microsleep detection system can be con-
sidered a regression problem. In such a scenario, the
user’s performance on the task needs to be predicted.
A threshold on the predictions can be set to alert the
user.
Microsleeps are indicated by eye closure, droopy eyes,
head nodding, and total loss of visuomotor respon-
siveness. EEG with fewer electrodes specifically from
occipital and temporal can therefore suffice. These
EEG signals combined, at the feature or decision level,
with easily measurable and socially acceptable physi-
ological signals, like EOG, fascial muscle contraction,
and skin conductivity [44] are likely to improve the
overall detection performances.

7 CONCLUSION
All the reviewed articles reported low detection per-
formances that can be attributed to the overlapping
events of microsleep and responsiveness, low SNR of
the EEG signals, and subject-specific and skewed data
distributions. Consideration of microsleep detection as
a regression problem and fusion of multiple easily mea-
surable signals can be experimented with to improve
the overall detection performances of the microsleep
detection systems.
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