Effect of Silica Fume as Partial Replacement of Cement on Compressive Strength of Roller Compacting Concrete
Abstract
Silica fume is an industrial by-product that can be used as a partial replacement of cement to enhance the strength related properties of roller compacting concrete. In past, industrial wastes were used to dump on earth, river, and sea that creates a hazardous environment for aquatic life as well as for humans. Nowadays, the use of industrial by-products as cement replacement is popular in the construction industry because it protects the environment from hazards. In this research, the effect of silica fume as partial replacement of sulphate resisting cement is investigated on the compressive strength of roller compacting concrete. Total four types of mix proportions were casted using concert mix ratio as 1:2:4 to investigate the compressive strength of roller compacting concrete at 7 and 28 days of curing age. The sulphate resisting cement was partially replaced with silica fume by 0%, 5%, 10%, and 15% by weight of cement. The zero slump was maintained in all mixes. It was observed that the mix proportions containing 5% and 15% silica fume replacement showed maximum and minimum compressive strength of roller compacting concrete respectively.
Copyright (c) This is an open access article published by QUEST Research Journal. QUEST Research Journal holds the rights of all the published articles. Authors are required to transfer copyrights to journal to make sure that the article is solely published in QUEST Research Journal; however, the authors and readers may freely read, download, copy, distribute, print, search, or link to the full texts of the articles without asking prior permission from the publisher or the author.

This work is licensed under a Creative Commons Attribution 4.0 International License.